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Background

This case study implements a new approach for evaluation of efficiency score for a decision making unit (DMU)
in Data Envelopment Analysis (DEA). Charnes-Cooper-Rhodes (CCR) model evaluates the efficiency score of
DMU as its highest achievable efficiency ratio (see, Charnes et all (1978)). Salo and Punkka (2011) studies the
best and worst rankings that one DMU can attain over feasible input/output weights. The best efficiency ranking
of this DMU is obtained by minimizing the number of DMUs with efficiency measure higher than this DMU,
while the worst ranking of this DMU is obtained by minimizing the number of DMUs with efficiency measure
lower than this DMU. Both the best and worst rankings should be obtained by solving a mixed-integer linear
program (MILP). It is difficult to solve these problems, because the objective function includes the cardinality
of a set that depends on the decision variables. Wang and Uryasev (2019) proposed to evaluate the efficiency of
DMU with the best and the worst buffered-ranking. The buffered-rankings has a great computational advantage
over rankings based on MILP. Finding the best and the worst buffered-rankings can be reduced to convex and
linear programming.
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Notations

J = number of DMUs;

N = number of types of inputs, which consumes each DMU;

M = number of types of outputs, which produces each DMU;

xnj = number of units of the n-th input type, which consumes the j-th DMU, xnj > 0;

ymj = number of units of the m-th output type, which produces the j-th DMU, ymj > 0;

~xj = (x1j, . . . , xNj)
T = vector of input consumptions for DMUj, j = 1, . . . , J;

~yj = (y1j, . . . , yMj)
T = vector of output productions for DMUj j = 1, . . . , J;

~ν = (ν1, . . . , νN)
T = vector of non-negative weights for inputs;

~µ = (µ1, . . . , µN)
T = vector of non-negative weights for outputs;
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Ej(~ν,~µ) = ~µT~yj/~νT~xj = effiiency of DMUj;

Aν, Aµ = coefficient matrices derived from the preference statements about value of inputs and outputs. If no
preference information is imposed on the inputs and outputs, then Aν, Aµ are null matrices;

S = {(~ν,~µ) 6= 0|~ν > 0, Aν~ν > 0,~µ > 0, Aµ~µ > 0} = feasible set of weight vectors~ν,~µ;

DMUo = evaluated DMU, o ∈ J = {0, . . . , J};

φ = max(~ν,~µ)∈S Ej(~ν,~µ) s.t. Ej(~ν,~µ) ≤ 1, ∀j ∈ J = Charnes-Cooper-Rhodes (CCR) model, which
evaluates DMUo. Under the constraint that all efficiency ratios do not exceed 1, CCR evaluates the efficiency
score of DMUo as its highest achievable efficiency ratio by choosing the optimal (~ν,~µ) ∈ S;

|A| = cardinality of set A;

X = random variable;

z = threshold;

pz(X) = P(X ≥ z) = probability of exceedance (POE);

p̄z(X) = mina>0 E[a(X− z) + 1]+ = buffered probability of exceedance (bPOE);

Rank+o (~ν,~µ) = 1 +
∣∣{j ∈ J |Ej(~ν,~µ) > Eo(~ν,~µ)

}∣∣ = upper ranking for DMUo under one setting of in-
put/output weights (~ν,~µ);

Rank−o (~ν,~µ) =
∣∣{j ∈ J |Ej(~ν,~µ) ≥ Eo(~ν,~µ)

}∣∣ = lower ranking for DMUo under one setting of input/output
weights (~ν,~µ);

Rank+∗o = min
(~ν,~µ)∈S

Rank+o (~ν,~µ) = best (highest) ranking that DMUo can achieve by choosing the weights

(~ν,~µ) ∈ S most favorable to DMUo;

Rank−∗o = max
(~ν,~µ)∈S

Rank−o (~ν,~µ) = worst (lowest) ranking that DMUo can achieve by choosing the weights

(~ν,~µ) ∈ S least favorable to DMUo;

E(~ν,~µ) = [E1(~ν,~µ), · · · , EJ(~ν,~µ)]T = efficiency measures for J DMUs with input/output weights (~ν,~µ);

E[1](~ν,~µ) ≥ E[2](~ν,~µ) ≥ E[3](~ν,~µ) ≥ · · · ≥ E[J](~ν,~µ) = non-increasing order of efficiency measures for J
DMUs with input/output weights (~ν,~µ);

UAk[E(~ν,~µ)] = 1
k

(
∑bkcj=1 E[j](~ν,~µ) + (k− bkc)Edke(~ν,~µ)

)
= k-upper average, k ∈ [1, J], bkc denotes the

largest integer less than or equal to k, and dke denotes the smallest integer greater than or equal to k;

bRank+o (~ν,~µ) = max {k ∈ [1, J]|UAk[E(~ν,~µ)] ≥ Eo(~ν,~µ)} = upper buffered-ranking for DMUo with in-
put/output weights (~ν,~µ);

bRank+∗o = min
(~ν,~µ)∈S

bRank+o (~ν,~µ) = the best buffered-ranking (effiency score for DMUo);
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LAk[E(~ν,~µ)] = 1
k

(
∑bkcj=1 E[J+1−j](~ν,~µ) + (k− bkc)E[J+1−dke](~ν,~µ)

)
= k-lower average;

bRank−o (~ν,~µ) = J + 1−max {k ∈ [1, J]|LAk[E(~ν,~µ)] ≤ Eo(~ν,~µ)} = lower buffered-ranking for DMUo with
weights (~ν,~µ);

bRank−∗o = max(~ν,~µ)∈S{J + 1− bRank−o (~ν,~µ)} = the worst buffered-ranking for DMUo;

(~̃x, ~̃y) =random vectors which follow the uniform multivariate distribution with support {(~̃x1, ~̃y1), . . . , (~̃xJ , ~̃yJ)},
i.e. ∀j ∈ J , P{(~̃x, ~̃y) = (~̃xj, ~̃yj)} = 1/J;

ξ = ~µT~̃y−~νT~̃x−~µT~yo +~νT~xo = random variable;

Rank+∗o = 1 + J × min
(~ν,~µ)∈S

POE0(~µT~̃y−~νT~̃x−~µT~yo +~νT~xo);

Rank−∗o = J − J × min
(~ν,~µ)∈S

POE0(~νT~̃x−~µT~̃y−~νT~xo +~µT~yo);

bRank+∗o = J × min
(~ν,~µ)∈S

bPOE0(~µT~̃y−~νT~̃x−~µT~yo +~νT~xo);

bRank−∗o = J + 1− J × min
(~ν,~µ)∈S

bPOE0(~νT~̃x−~µT~̃y−~νT~xo +~µT~yo).

Optimization Problem 1 (best ranking)

minimizing probability that ξ exceeds zero

min
(~ν,~µ)∈S

POE0(~µ
T~̃y−~νT~̃x−~µT~yo +~νT~xo)

subject to

~νT~xo +~µT~yo = 1

~ν ≥ 0, A~ν~ν ≥ 0, ~µ ≥ 0, A~µ~µ ≥ 0.

Optimization Problem 2 (worst ranking)

minimizing probability that −ξ exceeds zero

min
(~ν,~µ)∈S

POE0(~ν
T~̃x−~µT~̃y−~νT~xo +~µT~yo)

subject to

~νT~xo +~µT~yo = 1

~ν ≥ 0, A~ν~ν ≥ 0, ~µ ≥ 0, A~µ~µ ≥ 0.
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Optimization Problem 3 (best ranking)

minimizing bPOE that ξ exceeds zero

min
(~ν,~µ)∈S

bPOE0(~µ
T~̃y−~νT~̃x−~µT~yo +~νT~xo)

subject to

~ν ≥ 0, A~ν~ν ≥ 0, ~µ ≥ 0, A~µ~µ ≥ 0.

Optimization Problem 4 (worst ranking)

minimizing bPOE that −ξ exceeds zero

min
(~ν,~µ)∈S

bPOE0(~ν
T~̃x−~µT~̃y−~νT~xo +~µT~yo)

subject to

~ν ≥ 0, A~ν~ν ≥ 0, ~µ ≥ 0, A~µ~µ ≥ 0.

4


