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Abstract

A retiree with a savings account balance, but without a pension is confronted with an
important investment decision that has to satisfy two conflicting objectives. Without a pension
the function of the savings is to provide post-employment income to the retiree. At the same
time, most retirees want to leave an estate to their heirs. Guaranteed income can be acquired by
investing in an annuity. However, that decision takes funds away from investment alternatives
that might grow the estate. The decision is made even more complicated because one does not
know how long one will live. A long life expectancy may suggest more annuities, and short
life expectancy could promote more risky investments. However there are very mixed opinions
about either strategy. A framework has been developed to assess consequences and the trade-offs
of alternative investment strategies. We propose a stochastic programming model to frame this
complicated problem. The objective is to maximize expected terminal net worth (the estate),
subject to cash outflow constraints. The cash outflow shortages are penalized in the objective
function of the problem. We use kernel method to build position adjustment functions that
control how much is invested in each asset. These adjustments nonlinearly depend upon asset
returns in previous years. Case study was conducted using two variations of the model. The
parameters used in this case study correspond to typical retirement situation. The case study
shows that if the market forecasts are pessimistic, it is optimal to invest in annuity. The case
study results, codes, and data are posted at the website.

1 Introduction

The problem of selecting optimal portfolios for retirement has unique features that are not addressed
by more commonly used portfolio selection models used in trading. One distinct feature of a
retirement portfolio is that it should incorporate the life span of an investor. The planning horizon
depends on the age of investor, or more specifically, on a conditional life expectancy. Another
important feature is to guarantee, in some sense, that the individual will be able to withdraw some
amount of money every year from a portfolio by selling some predefined amount of assets without
injecting external funds. Finally, one of the questions that the models tries to answer is, in what
situation is it beneficial to invest in annuity instead of more risky assets.

Most of portfolio optimization literature considers portfolios focusing on risk minimization with
some budget and expected profit constraints. The famous mean-variance (or Markowitz) portfolio
Markowitz [1952] minimizes portfolio variance with constraints on the expected return. There are
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many directions that extend the original mean-variance portfolio and deal with its shortcomings.
One direction is to substitute variance with some other risk measures. Variance does not distinguish
positive and negative portfolio returns, however investors are mostly concerned only with negative
returns. Rockafellar and Uryasev [2000, 2002] and Krokhmal et al. [2002] used Conditional Value-at
Risk (CVaR) instead of the variance. CVaR is a convex function of its random variable and therefore
problems involving CVaR can be solved efficiently in many cases. Another important risk measure,
which is frequently used in trading, is drawdown. Drawdown can be optimized with convex and lin-
ear programming, see Chekhlov et al. [2003, 2005] and Zabarankin et al. [2014]. Other extension of
the portfolio theory focuses on dynamic models. In dynamic models the decision to invest is made
over time. The dynamic models can be of two types, continuous-time and discrete-time (multi-
stage) models. In continuous time, the decision to invest is made continuously and in discrete-time,
the investment decisions take place on specific time moments. For the continuous-time portfolio
selection see Merton [1969, 1971]. For discrete-time stochastic control model see Samuelson [1969].
A comprehensive literature review on dynamic models is given in Rizal and Wiryono [2015]. Mul-
tistage models can be formulated as stochastic optimization problems. Mulvey and Shetty [2004]
and Mulvey and Vladimirou [1992] developed a general multistage approach for modeling financial
planning problems. Shang et al. [2016] and Bogentoft et al. [2001] use stochastic programming to
solve dynamic cash flow matching and asset/liability management problems, respectively. In gen-
eral, it is very hard to solve multistage stochastic optimization problems formulated with scenario
trees, due to the size of the problem (number of variables) growing beyond tractable bounds. It
should be mentioned that calibration of such trees is a difficult non-convex optimization problem.

In order to avoid the dimensionality problems, Calafiore [2008] models the investment decisions
as linear functions that remain same across all scenarios and produce the investment decision based
on previous performance of the asset.

Takano and Gotoh [2014] model the investment decisions with kernel method, resulting in the
nonlinear control functions depending upon returns of instruments.

We follow ideas of Takano and Gotoh [2014] and model multistage portfolio decision process
using the kernel method. The investment horizon is 35 years, starting from the retirement of the
investor at the age of 65. The objective is to maximize the discounted expected terminal wealth
subject to constraints on cash outflows from the portfolio. On every scenario, the discounted
weighted portfolio value is calculated, where the probabilities of death are used as weights. The
probability of death is calculated from the U.S. mortality tables. The investor wants to have
predetermined cash outflows obtained by selling a portion of the portfolio. Risk of shortage of
this cash outflows is managed by penalizing the cash outflow shortage in the objective function.
Furthermore, the monotonicity constraints are imposed on the cash outflows from the portfolio.
Without the monotonicity constraint the model might not provide the necessary cash outflow on
certain periods and instead, reinvest that amount to increase the portfolio terminal value.

We conducted a case study corresponding to a typical investment decision upon retirement,
in order to reveal the conditions leading to investments in annuities. Two types of asset return
scenarios are considered. First type assumes that the asset returns will be similar to the historically
observed rates of the asset. The second type of scenarios assumes the future asset returns will be
significantly lower. These scenarios are created by subtracting 12% from the historical returns of
all assets. The case study shows that for the first type of scenarios, where rates are similar to the
ones observed in the past, investment in the annuities is not optimal. However, in the case when
the asset growth rates are significantly lower, the model invests only in the annuities.
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2 Notations

We start with introduction of.

• N := number of assets available for investments,

• S := number of scenarios,

• T := portfolio investment horizon,

• rsi,t := rate of return of asset i = 1, . . . , N during period t = 1, . . . , T in scenario s =
1, . . . , S; we will call rate of return by just return and denote the vector of returns by
rst = (rs1,t, . . . , r

s
N,t) ,

• vs
m,t = {rsm, . . . , rst−1} := set of returns observed from period m, until the end of period t− 1

(not including the returns rst ) in scenario s,

• dst := discount factor at time t in scenario s; discounting is done using inflation rate ρst ,
dst = 1/(1 + ρst )

t ,

• pt := probability that a person will die at the age 65 + t (conditional that he is alive at the
age of 65),

• yi := vector of control variables for investment adjustment function,

• f(vs
t ,yi) := investment adjustment function defining how much investment is made in each

scenario s in asset i at the end of period t,

• G(yi) := regularization function of control parameters,

• K(vs
m,t,v

k
m,t) := kernel function, k = 1, . . . , S,

• xsi,t := investment amount to i-th asset at the end of time period t in scenario s,

• xi := investments to i-th asset at time t = 0,

• usi,t := adjustment (change in position) of asset i at the beginning of period t in scenario s,

• Rs
i,t := cash outflow resulting from selling an asset i at the end of time t in scenario s,

• V0 := portfolio value at time t = 0 (initial investment),

• V s
t := portfolio value at time t in scenario s,

• z := investment in annuity at time t = 0(in dollars),

• As
t := yield of annuity at the end of time period t in scenario s,

• L := amount of money that the investor is planing to withdraw as each time t,

• λ := regularization coefficient, λ > 0,

• κt := penalty for the cash flow shortage at time t,

• α := upper bound on sum of absolute adjustments each year, expressed as a fraction of the
portfolio.
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3 Model Formulation

This section develops a model for optimization of a retirement portfolio. We consider a portfolio
including stock indices, bond indices, and an annuity. The annuity pays amount As

tz at the end
of each period t and does not contribute funds to the terminal wealth. Annuity is bought at time
t = 0 and can not be bought or sold after that moment. Given initial investments in assets xi, the
dynamics of investments in stocks and bonds are as follows

xsi,1 = (1 + rsi,1)xi, (1)

xsi,t = (1 + rsi,t)(x
s
i,t−1 + usi,t−1 −Rs

i,t−1) t = 2, . . . , T.

Variables usi,t and Rs
i,t control how much is invested at the end of each period in each asset. usi,t is

a position adjustments for asset i at the end of time t in scenario s. Rs
i,t is cash outflow from the

portfolio, generated from selling asset i at time t in scenario s. The variable usi,t is defined as

usi,t = f(vs
t ,yi), (2)

where vs
t is a set of returns for all assets, up to time t, in scenario s, and yi are some parameters

defining the function f . Therefore, usi,t, are some nonlinear functions of previous returns of assets.
The explicit form of function f is not specified in this section. The only requirement on function f
is that it should be linear in yi, i.e.

f(vs
t , γ1y

1
i + γ2 y

2
i ) = γ1f(vs

t ,y
1
i ) + γ2 f(vs

t ,y
2
i ),

where γ1, γ2 ∈ R. Also, it should be noted that f does not change with t. The linearity of f with
respect to yi is introduced to formulate the portfolio optimization problem as a convex programming
problem.

The total asset adjustments must sum to 0, this is expressed as a constraint,

N∑
i=1

usi,t = 0 . (3)

In addition to (3) the sum of absolute adjustments (over each asset i) in each period t and
scenario s is constrained to be less than or equal to some fraction α of the portfolio value in the
previous year of the same scenario,

N∑
i=1

|usi,t| ≤ αV s
t−1. (4)

Constraint (4) serves as additional regularization on the adjustments. Without constraint (4) the
values of usi,t can potentially be very large in absolute value but cancel out due to opposite signs
and still satisfy (3).

The value of the portfolio at the end of time period t in scenario s equals,

V s
t =

N∑
i=1

xsi,t . (5)

The objective is to maximize terminal wealth of the portfolio. The terminal wealth is the weighted
average of the discounted expected portfolio values in each scenario, where the probabilities of
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death pt are used as weights. For every scenario s the portfolio value V s
t , at the end of time period

t, is discounted to time 0 using discounting coefficients dst , defined by inflation, therefore,

discounted terminal wealth in scenario s =

T∑
t=1

ptd
s
tV

s
t . (6)

By averaging over scenarios we obtain the expected terminal wealth,

1

S

S∑
s=1

T∑
t=1

ptd
s
tV

s
t . (7)

In order to avoid over-fitting the data, we included the regularization term G(yi), defined for every
instrument i. The total regularization term is

N∑
i=1

G(yi) . (8)

The total cash outflow from selling the assets in the portfolio equals

cash flow from portfolio =

N∑
i=1

Rs
i,t .

The amount of money that the investor receives from the portfolio and annuity at the end of time
period t in scenario s equals As

tz +
∑N

i=1R
s
i,t. If As

tz +
∑N

i=1R
s
i,t < L then there is a shortage of

cash outflow and the resulting amount is penalized in the objective. Let {κt}Tt=1 be some decreasing
sequence of positive numbers, the following function is a penalty term of cash outflow shortages in
the objective

T∑
t=1

κt

[
L−As

tz −
N∑
i=1

Rs
i,t

]+

, (9)

where [∗]+ = max{∗, 0}. To illustrate why it is important that {κt}Tt=1 is a decreasing sequence,
consider the case where all κt are equal. Also, lets assume that there is a shortage of cash outflow,
equal to the amount w, at some year t > 0. Because, κt are all equal in (9), it does not make a
difference for that penalty term if there is a shortage equal to w/t during every year until t, or
just a single shortage of w at time t. However, if the amount of w/t is reinvested before time t
in the portfolio, it will(probably) increase in value by the time t and therefore, it will increase the
terminal wealth of the portfolio. So, if {κt}Tt=1 is not a decreasing sequence, the model will try to
incur penalty as soon as possible, even if there are enough funds in the portfolio at that earlier
date, and reinvest that shortage amount in the portfolio. Therefore the parameters κt should be
selected in a way that will outweigh any possible benefits from reinvesting at earlier dates. A simple
possible formula for κt is κt = κ(1 + r̄)T−t, where κ > 1 is some constant and r̄ is some percentage,
such that it is significantly greater than the average growth rate of any asset considered in the
portfolio. With this simple formula for κt, any benefits of reinvesting early will be outweighed by
the corresponding penalty.

The model includes the constraint on monotonicity of the cash outflows from the portfolio

N∑
i=1

Rs
i,t−1 ≥

N∑
i=1

Rs
i,t . (10)
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Without the monotonicity constraint, the model might not provide necessary cash outflows at
the end of certain years and instead, reinvest that amount to increase the terminal wealth of the
portfolio. The monotonicty constraint ensures that the cash outflow shortage occurs only in years
where the portfolio value drops below the cash outflow amount at the end of the previous year.

We minimize the objective function, containing expected costs with minus sign, regularization
term with penalty coefficient λ > 0 and cash outflow shortage with penalty κt

− 1

S

S∑
s=1

T∑
t=1

ptd
s
tV

s
t + λ

N∑
i=1

G(yi) +
T∑
t=1

κt

[
L−As

tz −
N∑
i=1

Rs
i,t

]+

. (11)

The explicit form of function G is not defined in this section, however, it is assumed that the
function G(y) is a convex function in y. This is important to formulate the problem as a convex
optimization. The resulting objective function (11) is a convex function in yi and linear in V s

t .
Further we provide the general model formulation.

min
us
i,t,R

s
i,t,

V0,V s
t ,yi,

xs
i ,x

s
i,t,z

1

S

S∑
s=1

T∑
t=1

ptd
s
tV

s
t + λ

N∑
i=1

G(yi) +
T∑
t=1

κt

[
L−As

tz −
N∑
i=1

Rs
i,t

]+

(12)

s.t.

xsi,1 = (1 + rsi,1)xi i = 1, . . . , N ; s = 1, . . . , S

xsi,t = (1 + rsi,t)(x
s
i,t−1 + usi,t−1 −Rs

i,t−1) i = 1, . . . , N ; t = 2, . . . , T ; s = 1, . . . , S

N∑
i=1

xi = V0 − z

V s
t =

N∑
i=1

xsi,t t = 1, . . . , T ; s = 1, . . . , S

N∑
i=1

usi,t = 0 t = 1, . . . , T ; s = 1, . . . , S

N∑
i=1

Rs
i,t ≤

N∑
i=1

Rs
i,t−1 t = 2, . . . , T ; s = 1, . . . , S

usi,t = f(vs
m,t,yi) i = 1, . . . , N ; t = 1, . . . , T ; s = 1, . . . , S

N∑
i=1

|usi,t| ≤ αV s
t−1 t = 2, . . . , N ; s = 1, . . . , S

N∑
i=1

|usi,1| ≤ α(V0 − z)

z ≥ 0

Rs
i,t ≥ 0

xi ≥ 0 i = 1, . . . , N

xsi,t ≥ 0 i = 1, . . . , N ; t = 1, . . . , T ; s = 1, . . . , S
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4 Special Case of General Formulation

This section presents a special case of the general problem formulation. We picked functions G(yi)
and f(rst ,yi) similar to the model developed in Takano and Gotoh [2014].

Let m > 0 be some integer and Km(vs
t ,v

k
t ) be the kernel function defined as follows

K(vs
m,t,v

k
m,t) = exp

(
− σ

m

N∑
i=1

t−1∑
l=t−m−1

(rki,l − rsi,l)2

)
, (13)

where σ > 0 is some constant. The parameter m controls how many previous years of information is
used by the kernel function to calculate the portfolio adjustments. Given (13), the control function
f(vs

t ,yi) is defined as

f(vs
t ,yi) =

S∑
j=1

yjiK(vs
m,t,v

j
m,t), where yi = (y1

i , . . . , y
S
i ). (14)

Function (14) is linear in yi. By substituting (14) in constraint (2), we get the following adjustment
functions

usi,t =

S∑
j=1

yjiK(vs
m,t,v

j
m,t) i = 1, . . . , N ; t = 1, . . . , T ; s = 1, . . . , S. (15)

We use L2 norm as the regularization function G(yi),

G(yi) = ||yi||22 =

S∑
s=1

(ysi )2. (16)

Substituting (16) in the objective, gives

− 1

S

T∑
t=1

S∑
s=1

ptd
s
tV

s
t + λ

N∑
i=1

||yi||22 +
T∑
t=1

κt

[
L−As

tz −
N∑
i=1

Rs
i,t

]+

. (17)

This model can be reduced to convex quadratic problem by linearizing (9). Other formulations
are also possible. For example using L1 norm instead of L2 norm in (16) leads to a linear program-
ming formulation after linearization of (9). Another variation of this model could be linear (with
respect to rates rsi,t) adjustment functions instead of the nonlinear kernel adjustment functions.
Linear investment adjustments will lead to a lower terminal wealth. However the dimensionality
of the problem will be reduced significantly, because the problem size (the number of parameters
to be optimized) will increase linearly with the number of scenarios, instead of quadratically, with
kernel functions.

5 Simulation of Return Scenarios and Mortality Probabilities

5.1 Historical Simulations

We simulate return scenarios of considered investment instruments for T years in the future. The
simulations are based on end-of-year data of N assets over T̄ years. Let t̄ ∈ {1, . . . , T̄} be a year
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p̂(age)

Age Male Female

65 0.0158 0.0098
66 0.0170 0.0107
. . . . . . . . .
119 0.8820 0.8820

Table 1: USA Mortality table for the year 2017 with probabilities of death for male and female
USA citizens. This table give a conditional probability of death at some age, given that person is
alive at year earlier of that age.

index for a historical dataset and r̄i,t̄ be a historical return of asset i. The returns of the indices
are represented as the N × T̄ matrix,

r̄1,1 r̄2,1, . . . , r̄N,1

r̄1,2 r̄2,2, . . . , r̄N,2

. . . . . . . . . . . .
r̄1,T̄ r̄2,T̄ , . . . , r̄N,T̄

 (18)

We generate return sample paths (scenarios) with the historical simulation method, also known
as the “Bootstrap” method. The historical simulation method samples a random row from the
matrix (18) and uses this row as a possible future realization of returns of instruments. Therefore
the future simulation of returns is just sampling of the matrix (18) with replacement. Each such
sample represents a future dynamics of return of the assets. Note that the simulation method
samples entire row from matrix (18), therefore the correlations among assets are maintained in the
random sample.

5.2 mortality probabilities pt

Let τ be a random variable that denotes an age of death of the investor. The probability that an
investor dies in time interval [t− 1, t) since retirement at the age 65 is defined as follows

pt = P(t+ 64 < τ ≤ t+ 65 | τ > 65), t = 1, . . . , T.

It is possible to calculate pt using the mortality table of USA. We use the mortality Table 1,
which gives probability p̂t that t+ 64 < τ ≤ t+ 65, conditional that τ > t+ 64,

p̂t = P(t+ 64 < τ ≤ t+ 65|τ > t+ 64), t = 1, . . . , T.

It can be shown that

pt =

{
p̂t, if t = 1

p̂t
∏t−1

j=1(1− p̂j), if t = 2, . . . , T

Figure 1 shows the function pt.

6 Case Study

6.1 Case Study Parameters

The case study results, codes, and data are posted at web, see Pertaia and Uryasev [2019].
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Figure 1: Probabilities that person dies while he/she is t+ 64 years old (t = 1, . . . , T ), conditional
that he/she is alive at the age of 65.

This case study considers a typical retirement situation in USA. Two variants of future asset
return scenarios are considered. These two variants correspond to an optimistic and pessimistic
views regarding the future market dynamics. In the optimistic case, the future returns over 35
years, for all instruments, are sampled from the historical returns over the recent 30 years. In the
pessimistic case, the market is assumed to enter into a stagnation, similar to the Japaneses market,
which has approximately zero cumulative return for the recent 30 years. In the pessimistic case,
12% is subtracted from each asset return, every year in every scenario.

Here are parameters of the model, which correspond to a typical retirement conditions in USA.

• The retiree is 65 years old.

• Investment horizon is 35 years.

• Portfolio is re-balanced at the end of each year.

• Retiree is a male (mortality probabilities for males are used in objective function).

• $500,000 is available for investment at time t = 0.

• Yearly inflation rate is 3% during the entire investment horizon.

• Yearly rate of return of annuity is 5%.

• Adjustment rules use kernel functions with parameter σ = 1.

• λ = 100

• κt = 2 · 1.2(35−t)

• α = 20%
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• m = 5

There are 10 stock and bond indexes available for investment, see Table 2.

Index Name Index Abbreviation

Barclays Muni FI-MUNI
Barclays Agg FI-INVGRD
Russell 2000 USEQ-SM
Russell 2000 Value USEQ-SMVAL
Russell 2000 Growth USEQ-SMGRTH
S&P 500 USEQ-LG
S&P 400 Mid Cap USEQ-MID
S&P Citi 500 Value USEQ-LGVAL
S&P Citi 500 Growth USEQ-LGGRTH
MSCI EAFE NUSEQ

Table 2: The list of assets in the retirement portfolio.

For each index, 30 years of yearly returns (from 1985, to 2015) are used to create future scenarios
(return sample-paths). Each scenario includes 35 yearly returns, sampled from the 30 year historical
dataset (see the Historical Simulation method in Section 5). 200 scenarios are generated for both,
optimistic and pessimistic cases. 100 scenarios out of 200, for both optimistic and pessimistic
scenario datasets, are used to find optimal investment rules in the model. The remaining 100
scenarios, not included in the optimization, are used for evaluating the out-of-sample performance
of the model.

6.2 Optimal Portfolio

The considered optimization problems are reduces to Quadratic Programming, by linearizing func-
tion (9) in the objective. Gurobi version 8.1.0 and Pyomo version 5.5.0 are used for solving th
resulting quadratic programming problem. The case study link (Pertaia and Uryasev [2019]) con-
tains the corresponding code.

The coefficients of the adjustment functions yi, are obtained by solving the quadratic optimiza-
tion problem corresponding to the optimal portfolio problem (12). Next, the adjustment values for
the out-of-sample dataset are evaluated, according to the formula (14). The adjustment functions,
for end of the time moment t, take previous m rates of returns of all assets in the portfolio, observed
in time interval [t −m, t − 1] and produce an asset adjustment for that time moment. Note that
returns that go into these functions are different on each scenario, therefore the adjustment values
will be different on each scenario, as well.

In order to calculate the portfolio values on the out-of-sample data, the cash outflows Rs
i,t are

required. The model does not provide the cash outflow Rs
i,t for the out-of-sample scenarios, as

those values are calculated for the in-sample scenarios. Therefore, it is unclear what values of Rs
i,t

should be use in the out-of-sample scenarios. Additionally, despite the constraint on positivity
of asset positions in the in-sample optimization problems, a small portion of the assets may be
allocated to short positions in out-of-sample runs. Usually, the retirement portfolios do not have
short positions, since it is considered a risky strategy and therefore not suitable for a risk averse
retiree investors. Next, we show how to circumvent these problems for the out of sample datasets.

Let P s,t
+ and P s,t

− be the total dollar investment in long and short positions, in a portfolio at
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the end of time period t in scenario s,

P s,t
+ =

N∑
i=1

[xsi,t]
+ ,

P s,t
− =

N∑
i=1

[−xsi,t]+.

The cash outflows are calculated as follows

Rs
i,t = L

[xsi,t−1]+

P s,t−1
+

. (19)

So the cash outflows originate only from the long positions and are proportional to P s,t−1
+ .

All short positions, at the end of time period t in scenario s, are set to 0. As a result, the amount
of money equal to P s,t

− has to be subtracted from the remaining (long) part of the portfolio. To

shrink the portfolio by P s,t
− , each long asset position is reduced in a proportion to P s,t

+ . Thus, the
new positions x̄si,t are

x̄si,t =

0, if xsi,t ≤ 0

xsi,t −
xs
i,t

P s,t
+

P s,t
− , otherwise.

Tables 3 through 7 show the average (over scenarios) investments in assets over time for op-
timistic out-of-sample scenarios, corresponding to the model (12), with the minimum cash flows
requirements L ∈ {$10, 000; $30, 000; . . . , $90, 000}. Tables 8,10 and 8 show the average (over sce-
narios) investments in assets over time for pessimistic out-of-sample scenarios, corresponding to the
model (12), with the minimum cash flows requirements L ∈ {$10, 000; $25, 000; $30, 000; $50, 000}.
Tables 8,10 and 11, show that, in the pessimistic case, for L = $10, 000, the model invests 30% of
funds in the annuity and for L = $25, 000, 100% of investment goes into the annuities. However for
L = $30, 000 the model decreases the annuity investment to 56%. As for L = $50, 000 (and higher)
nothing is invested in the annuities and the model selects the stock/bond indexes. The graph 2
shows the average (taken over scenarios) portfolio values through time, constructed using the ad-
justment functions, corresponding to the model (12) with the minimum cash flows requirements
of L ∈ {$10, 000; $30, 000; . . . , $90, 000}. However in the optimistic scenarios, the model does not
invest in annuities at any minimum cash outflow requirement L.
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Figure 2: The average(over scenarios) portfolio value for the optimistic out-of-sample dataset,
constructed using adjustment functions, corresponding to model (12) wit minimum cash outflow
requirements L ∈ {$10, 000; $30, 000; . . . , $90, 000}

Asset Investment t=0 t=5 t=10 t=15 t=20 t=25 t=30 t=35

Annuity 0 0 0 0 0 0 0 0

FI-MUNI 0 0 0 0 0 0 0 0

FI-INVGRD 0 3 4 6 7 11 16 25

USEQ-SM 0 0 0 0 0 0 0 0

USEQ-SMVAL 0 28 54 104 171 360 635 1,177

USEQ-SMGRTH 0 1 1 2 4 7 13 19

USEQ-LG 0 0 0 0 0 0 0 0

USEQ-MID 500 779 1,475 2,791 4,993 10,593 20,183 36,797

USEQ-LGVAL 0 0 0 0 0 0 0 0

USEQ-LGGRTH 0 4 8 15 30 72 139 380

NUSEQ 0 50 80 153 268 444 762 1,186

Table 3: Average investment (in thousand dollars) in assets over time for the optimistic out-of-
sample scenarios with L = $10, 000. Average is taken over scenarios.
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Asset Investment t=0 t=5 t=10 t=15 t=20 t=25 t=30 t=35

Annuity 0 0 0 0 0 0 0 0

FI-MUNI 0 0 0 0 0 0 0 0

FI-INVGRD 3 34 44 51 64 95 138 194

USEQ-SM 0 0 0 0 0 0 0 0

USEQ-SMVAL 69 28 57 105 192 366 592 1,121

USEQ-SMGRTH 0 1 2 4 7 14 27 42

USEQ-LG 0 0 0 0 0 0 0 0

USEQ-MID 402 612 1,025 1,818 3,136 6,642 12,574 22,657

USEQ-LGVAL 0 0 0 0 0 0 0 0

USEQ-LGGRTH 25 30 54 102 181 448 920 2,594

NUSEQ 0 45 69 124 209 365 628 996

Table 4: Average investment (in thousand dollars) in assets over time for the optimistic out-of-
sample scenarios with L = $30, 000. Average is taken over scenarios.

Asset Investment t=0 t=5 t=10 t=15 t=20 t=25 t=30 t=35

Annuity 0 0 0 0 0 0 0 0

FI-MUNI 0 7 7 7 7 10 14 21

FI-INVGRD 330 244 202 206 246 328 492 680

USEQ-SM 0 0 0 0 0 0 0 0

USEQ-SMVAL 57 137 194 281 424 693 1,163 1,875

USEQ-SMGRTH 0 0 0 0 0 0 0 0

USEQ-LG 0 0 0 0 0 0 0 0

USEQ-MID 36 47 58 84 108 224 416 820

USEQ-LGVAL 0 0 0 0 0 0 0 0

USEQ-LGGRTH 77 65 66 92 157 386 857 2,515

NUSEQ 0 33 35 74 104 154 255 349

Table 5: Average investment (in thousand dollars) in assets over time for the optimistic out-of-
sample scenarios with L = $50, 000. Average is taken over scenarios.

Asset Investment t=0 t=5 t=10 t=15 t=20 t=25 t=30 t=35

Annuity 0 0 0 0 0 0 0 0

FI-MUNI 0 0 0 0 0 0 0 0

FI-INVGRD 195 117 67 40 32 35 44 56

USEQ-SM 0 0 0 0 0 0 0 0

USEQ-SMVAL 46 66 67 48 43 65 99 132

USEQ-SMGRTH 0 0 0 0 0 0 0 0

USEQ-LG 0 0 0 0 0 0 0 0

USEQ-MID 107 118 73 69 88 170 320 596

USEQ-LGVAL 0 0 0 0 0 0 0 0

USEQ-LGGRTH 136 92 77 90 142 350 748 2,300

NUSEQ 16 67 48 35 42 78 162 300

Table 6: Average investment (in thousand dollars) in assets over time for the optimistic out-of-
sample scenarios with L = $70, 000. Average is taken over scenarios.
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Asset Investment t=0 t=5 t=10 t=15 t=20 t=25 t=30 t=35

Annuity 0 0 0 0 0 0 0 0

FI-MUNI 0 0 0 0 0 0 0 0

FI-INVGRD 65 54 17 6 5 5 6 7

USEQ-SM 0 0 0 0 0 0 0 0

USEQ-SMVAL 70 83 51 30 29 46 76 115

USEQ-SMGRTH 0 0 0 0 0 0 0 0

USEQ-LG 0 0 0 0 0 0 0 0

USEQ-MID 164 85 30 28 33 67 133 302

USEQ-LGVAL 0 0 0 0 0 0 0 0

USEQ-LGGRTH 140 107 56 48 76 204 439 1,522

NUSEQ 61 58 26 12 9 14 23 42

Table 7: Average investment (in thousand dollars) in assets over time for the optimistic out-of-
sample scenarios with L = $90, 000. Average is taken over scenarios.

Asset Investment t=0 t=5 t=10 t=15 t=20 t=25 t=30 t=35

Annuity 147 147 147 147 147 147 147 147

FI-MUNI 0 0 0 0 0 0 0 0

FI-INVGRD 1 3 3 2 2 2 1 1

USEQ-SM 0 0 0 0 0 0 0 0

USEQ-SMVAL 2 3 2 3 2 1 1 0

USEQ-SMGRTH 0 0 0 1 0 0 0 0

USEQ-LG 0 0 0 0 0 0 0 0

USEQ-MID 350 350 360 378 384 355 311 303

USEQ-LGVAL 0 0 0 0 0 0 0 0

USEQ-LGGRTH 0 4 7 7 7 5 5 4

NUSEQ 0 4 4 3 3 3 2 2

Table 8: Average investment (in thousand dollar) in assets over time for the pessimistic out-of-
sample scenarios L = $10, 000. Average is taken over scenarios.
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Asset Investment t=0 t=5 t=10 t=15 t=20 t=25 t=30 t=35

Annuity 500 500 500 500 500 500 500 500

FI-MUNI 0 0 0 0 0 0 0 0

FI-INVGRD 0 0 0 0 0 0 0 0

USEQ-SM 0 0 0 0 0 0 0 0

USEQ-SMVAL 0 0 0 0 0 0 0 0

USEQ-SMGRTH 0 0 0 0 0 0 0 0

USEQ-LG 0 0 0 0 0 0 0 0

USEQ-MID 0 0 0 0 0 0 0 0

USEQ-LGVAL 0 0 0 0 0 0 0 0

USEQ-LGGRTH 0 0 0 0 0 0 0 0

NUSEQ 0 0 0 0 0 0 0 0

Table 9: Average investment (in thousand dollar) in assets over time for the pessimistic out-of-
sample scenarios L = $25, 000. Average is taken over scenarios.

Asset Investment t=0 t=5 t=10 t=15 t=20 t=25 t=30 t=35

Annuity 282 282 282 282 282 282 282 282

FI-MUNI 0 0 0 0 0 0 0 0

FI-INVGRD 43 15 1 0 0 0 0 0

USEQ-SM 0 0 0 0 0 0 0 0

USEQ-SMVAL 35 18 2 0 0 0 0 0

USEQ-SMGRTH 0 0 0 0 0 0 0 0

USEQ-LG 0 0 0 0 0 0 0 0

USEQ-MID 61 33 4 1 0 0 0 0

USEQ-LGVAL 0 0 0 0 0 0 0 0

USEQ-LGGRTH 54 27 3 0 0 0 0 0

NUSEQ 24 11 1 0 0 0 0 0

Table 10: Average investment (in thousand dollar) in assets over time for the pessimistic out-of-
sample scenarios L = $30, 000. Average is taken over scenarios.
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Asset Investment t=0 t=5 t=10 t=15 t=20 t=25 t=30 t=35

Annuity 0 0 0 0 0 0 0 0

FI-MUNI 0 0 0 0 0 0 0 0

FI-INVGRD 67 32 6 1 0 0 0 0

USEQ-SM 0 0 0 0 0 0 0 0

USEQ-SMVAL 95 64 24 6 3 1 0 0

USEQ-SMGRTH 0 0 0 0 0 0 0 0

USEQ-LG 0 0 0 0 0 0 0 0

USEQ-MID 148 105 42 13 5 1 0 0

USEQ-LGVAL 0 0 0 0 0 0 0 0

USEQ-LGGRTH 128 85 30 8 3 1 0 0

NUSEQ 62 37 13 3 1 0 0 0

Table 11: Average investment (in thousand dollar) in assets over time for the pessimistic out-of-
sample scenarios L = $50, 000. Average is taken over scenarios.

6.3 Expected Shortage Time for Different Cash Outflows L

When the investor demands higher cash outflows from the portfolio, the terminal value of the
portfolio should decrease. Also, with higher cash outflow demands, there are higher chances that
there will not be enough money in the portfolio, at some point, to finance these outflows.

To measure the cash outflow shortage resulting from the different values of L, the following
measure, named Expected Shortage Time (or ETS) is defined

ETS(L) =
1

S

S∑
s=1

T∑
t=1

pt(T − t)

(
L−

∑T
t=1R

s
i,t

)+

L

ETS is measured in years and calculates the amount of time the retiree will spend without the
necessary cash outflow L.

The parameters of the case study are used to construct the ETS values for the optimistic
and pessimistic cases. ETS is calculated on the in-sample data, for the cash outflow values of
L ∈ {$10, 000; $15, 000; . . . ; $100, 000}. The resulting ETS values are shown on graphs 3 and 4 for
optimistic and pessimistic scenarios respectively.

The graph 3 shows that, in the optimistic scenario, the retiree can have cash outflows up to
$50,000, without heaving any shortage at any time. For the values of L greater than $50,000,
the ETS grows roughly linearly. For L = $100, 000 the retiree will spend most of his expected life
without necessary cash outflow, because the portfolio can not provide this much cash outflow, given
the initial investment of $500,000.

It should be noted that, in the pessimistic case, if L ≤ $25, 000 the annuities can fully cover
the cash flow requirements and therefore ETS = 0. However, if L > $25, 000 the investment in the
annuities can no longer cover the cash outflow requirements. Even if the entire initial investment
goes into the annuities, it will provide only A ·z = 3% ·$500, 000 = $25, 000. Therefore, for L values
higher than $25,000, the model starts to invest in stock and bond indexes and the ETS is greater
than 0.

For the pessimistic scenario, if the cash flow requirement is L = $100, 000 the ETS is almost
equal to the life expectancy of the retiree. This happens because, on most pessimistic scenarios,
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Figure 3: ETS values for required cash flows L ∈ {$20, 000; $30, 000; . . . ; $100, 000}, calculated for
the optimistic scenario
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Figure 4: ETS values for required cash flows L ∈ {$10, 000; $15, 000; . . . ; $100, 000}, calculated for
the pessimistic scenario

the portfolio shrinks to 0 in a 3 or 4 years for L = $100, 000. However, if L = $30, 000, in the
pessimistic scenario, the retiree still has relatively small ETS values of around 3 year.
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7 Summary

This paper developed a multi-period investment model for retirement portfolios. The parameters
of the model represent a typical portfolio selection problem solved in the beginning of retirement.
The model maximizes expected terminal wealth of an investor subject to constraints on minimum
cash outflows from the portfolio. Investment decisions are based on adjustment rules implemented
with kernel functions.

The case study showed performance of the model with pessimistic and optimistic asset return
scenarios. In the pessimistic scenarios the market is assumed to enter a long term stagnation
modeled by subtracting 12% from all rates of returns of the stock/bond indexes considered for
investment. In this case it is optimal to invest a considerable portion of initial capital in annu-
ities. In the optimistic case the returns of stock/bond indexes are expected to remain similar to
past observations. In this case it is not beneficial to invest in the annuities, for the given model
parameters.

We defined a new cash outflow shortage measure called Expected Shortage Time (ETS). The
ETS calculates the number of years with shortage of cash outflows, given the retiree minimum cash
outflow requirements. The case study shows that even in the pessimistic asset return scenarios
a retiree can have zero ETS for some small cash outflows, due to a significant investment in the
annuities.
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