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CASE STUDY: Maximization of Log-Lokelihood in Hidden Markov Model (hmm_discrete, 

hmm_normal, linear, linearmulti) 

 

Background 

 

Approximation of set of random data by Hidden Markov Model may be a fruitful approach for many 
applications. 

  

This case study considers two variants of Hidden Markov Model. One with discrete distributions of 
observations and other with normal distributions of observations. Correspondently two Problem statements for 

maximization of Log-Lokelihood function in Hidden Markov Model are shown.  

 
For maximization type of problem PSG uses an expectation modification (EM) procedure in form of Baum–

Welch algorithm to find good initial point.  

 

hmm_discrete and hmm_normal functions report probabilities of initial states, transition probabilities and 
probabilities of observations or parameters of normal distributions. Additionally they report Viterbi states vector. 
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Notations 

𝑂̅ = set of possible observations (𝑂̅ = {𝑂1, … , 𝑂𝑚} for discrete distribution); 

𝑚 = number of possible observations for discrete distribution; 

𝑇 = number of consequence time moments; 

𝑜1, … , 𝑜𝑇 = sequence of observations, 𝑜𝑡 ∈ 𝑂̅; 

𝑛 = number of hidden states to be considered in a model; 

𝑥⃗ = vector of decision variables consisting of  𝑝⃗, 𝐴 and 𝐵 for discrete distributed observations or 

𝑥⃗ = vector of decision variables consisting of  𝑝⃗, 𝐴 and 𝑃 for normal distributed observations, 

where  

𝑝⃗ = (𝑝1, … , 𝑝𝑛) = vector of probabilities of initial states such that ∑ 𝑝𝑖
𝑛
𝑖=1 = 1, 

𝐴 = transition matrix with probabilities such that ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 = 1 for every 𝑖 = 1, … , 𝑛, 

𝐵 = observations probabilities matrix with probabilities such that ∑ 𝑏𝑖𝑙
𝑚
𝑙=1 = 1 for every 𝑖 = 1, … , 𝑛, 

𝑃 = matrix of parameters 𝜇𝑖 , 𝜎𝑖 of normal distributions 𝑁(𝜇𝑖 , 𝜎𝑖
2) for every 𝑖 = 1, … , 𝑛. 

For discrete distributions 
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𝐷𝑡  = diagonal matrix with probabilities 𝑑𝑖𝑖
𝑡 = 𝑏𝑖𝑙, 𝑖 = 1, … , 𝑛, 𝑡 = 1, … , 𝑇, where 𝑜𝑡 = 𝑂𝑙. 

For normal distributions 

𝐷𝑡  = diagonal matrix with densities of probabilities 𝑑𝑖𝑖
𝑡 =

1

𝜎𝑖√2𝜋
𝑒

−
(𝑜𝑡−𝜇𝑖)2

2𝜎𝑖
2

, 𝑖 = 1, … , 𝑛, 𝑡 = 1, … , 𝑇. 

For both cases 

𝒉𝒎𝒎_𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏(𝑥⃗, 𝑜⃗) = 𝑙𝑛(𝑝⃗𝑇𝐷1(∏ 𝐴𝑇
𝑡=2 𝐷𝑡)1⃗⃗) = Log-likelihood function for Hidden Markov Model. 

1⃗⃗ = (1, … ,1) is a vector with 𝑛 ones. 

 

 

 

Optimization Problem 1 

 

maximizing Log-likelihood function for Hidden Markov Model with discrete distributions of observations  

max
𝑥⃗

𝒉𝒎𝒎_𝒅𝒊𝒔𝒄𝒓𝒆𝒕𝒆(𝑥⃗, 𝑜⃗) 

 subject to 

 
constraints on probabilities of initial states 

𝒍𝒊𝒏𝒆𝒂𝒓(𝑝⃗) = 1, 

constraints on probabilities of transitions in every states 

𝒍𝒊𝒏𝒆𝒂𝒓𝒎𝒖𝒍𝒕𝒊(𝐴) = 1, 

constraints on probabilities of observations in every state 

𝒍𝒊𝒏𝒆𝒂𝒓𝒎𝒖𝒍𝒕𝒊(𝐵) = 1, 

box on variables 

𝑝𝑖 ≥ 0, 𝑎𝑖𝑗 ≥ 0, 𝑏𝑖𝑙 ≥ 0, 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑛, 𝑙 = 1, … , 𝑚. 

 

Remark: variables for hmm_discrete function and constraints on probabilities are generated by PSG 

automatically, so user should not define these variables and constraints in Problem statement. 

 

 

Optimization Problem 2 

 

maximizing Log-likelihood function for Hidden Markov Model with normal distributions of observations  

max
𝑥⃗

𝒉𝒎𝒎_𝒏𝒐𝒓𝒎𝒂𝒍(𝑥⃗, 𝑜⃗) 

 subject to 
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constraints on probabilities of initial states 

𝒍𝒊𝒏𝒆𝒂𝒓(𝑝⃗) = 1, 

constraints on probabilities of transitions in every states 

𝒍𝒊𝒏𝒆𝒂𝒓𝒎𝒖𝒍𝒕𝒊(𝐴) = 1, 

box on variables 

𝑝𝑖 ≥ 0, 𝑎𝑖𝑗 ≥ 0, 𝜎𝑖 ≥ 𝜀,   𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑛. 

 

Remark: variables for hmm_normal function and constraints on probabilities are generated by PSG 
automatically, so user should not define these variables and constraints in Problem statement. 

 

 


