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CASE STUDY: Style Classification with Quantile Regression (kb_err, pm_pen, pm_pen_g, cvar_dev, var_risk) 

  

Background 

 
This case study applies percentile regression to the return-based style classification of a mutual fund.  The 
procedure regresses fund return by several indices as explanatory variables. The estimated coefficients represent 

the fund’s style with respect to each of the indices.  

 
Stile classification problem was considered by Sharpe (1992) and Carhart (1997) with the standard regression 

approach based on the mean square error. They estimated conditional expectation of a fund return distribution 

(under the condition that a realization of explanatory variables is observed).  Basset and Chen (2001) extended this 
approach and conducted style analyses of quantiles of the return distribution. This extension is based on the 

quantile regression suggested by Koenker and Bassett (1978).  The quantile regression is more flexible compared 

to the standard least squares regression because it can identify dependence of various parts of the distribution from 

explanatory variables. A portfolio style depends on how a factor influences the entire return distribution, and this 
influence cannot be described by a single estimate. The single estimate given by a least squared regression may 

obscure performance in the tail of the distribution (which could be of a prime interest to a manager). Quantile 

regression can estimate, for instance, the impact of explanatory variables on the 99-th percentile of the loss 
distribution. Portfolios including derivatives may have quite different regression coefficients of mean value and 

tail quantiles. For instance, let us consider a strategy investing in naked deep out-of-the-money options. This 

strategy in most cases behaves like a bond paying some interest, however, in rare cases the strategy may have loses 

(potentially quite significant). Therefore, the mean value and 99-th percentile may have different regression 
coefficients of explanatory variables. 

 

We considered 3 equivalent formulations of the regression problem: 
 

1. Minimization of Koenker-Bassett error, see, Koenker and  Bassett (1978); 

2. Minimization of Koenker-Bassett error with representation through partial moments; 
3. Decomposition Theorem using CVaR deviation from Quantile Quadrangle, see Rockafellar and 

Uryasev (2013) and Rockafellar, et al. (2008). 

 

We regresses quantile of the return distribution of the Fidelity Magellan Fund on the Russell Value Index (RUJ), 
RUSSELL 1000 VALUE INDEX (RLV), Russell 2000 Growth Index (RUO), and Russell 1000 Growth Index 

(RLG). The confidence level in quantile regression is 0.1. 
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Notations 

 
I= number of style indices used for classification. We consider four indices: Russell 1000 value index 

     (optimization variable, i = 1), Russell 1000 growth index (optimization variable, i = 2), Russell 2000 value  

     index (optimization variable, i = 3), and Russell 2000 growth index (optimization variable, i = 4); 
 

J = number of scenarios (time periods);  j={1,…,J} index of scenarios; 
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0 =  dependent random variable modeling monthly return of the fund; 

I,θ,θ 1
= independent random variables modeling monthly return of style indexes; 

0j = monthly return of the fund, for which the classification is conducted, under scenario j ; scenarios are 

          equally probable (in the current case study 0j = monthly historical returns of the Fidelity Magellan 

          Fund); 
 

ji = monthly return of i-th style index (i = 1,2,…,I) under scenario j , scenarios are equally probable; 

jθ = )( 1 jIjj0 ,θ,,θθ  = j -th scenario vector;  

J
p j

1
 =  probability of j -th scenario, Jj ,,1 ; 

iθ = random value having J equally probable scenarios, }{ 1 Jii ,θθ  ,  i = 1,2,…,I; 

)( 1 I0 ,θ,,θθ θ = random scenario vector; 

)(
~

1 I,θ,θ θ = vector θ  without component 0θ ; 

),,( 10 Ixxx x = vector of regression coefficients (loading factors); 

),(~
1 Ixx x = vector x  without intercept; 





I

i

a

ii

a xθx
1

0
ˆ = estimate of  -percentile of 0 (i.e., VaR of 0  with confidence level  ) under the condition that 

a new realization   I ˆ,,ˆ,ˆ
21   is observed; 

i

I

i

i xxL 



1

00),( θx = loss function, having scenarios ),(,),,( 1 JLL θxθx  ; 

i

I

i

jijj xxL 



1

00),( θx  = j -th scenario of loss function ),,( θxL  Jj ,,1 ; 

w  = threshold in a Partial Moment function; 

}),(,0max{)),,((_
1





J

j

jj wLpwLpenpm θxθx  = expected excess of loss ),( θxL  over w  (Partial Moment 

Penalty for Loss); 

}),(,0max{)),,((__
1





J

j

jj wLpwLgpenpm θxθx = expected excess of  ),( θxL  over w  (Partial 

Moment Penalty for Gain); 

 

  = confidence level,  10  ; 
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),0),((__)1(),0),((_ θxθx LgpenpmLpenpm    =  Koenker-Bassett error; 

 
 

Quantile regression methodology 

 

Expression 



I

i

a

ii

a xθx
1

0
ˆ  estimates  -percentile of 0 . Vector of regression coefficients 

Ta

I

aaa xxx ),,( 10 x  

can be obtained by using one of the following approaches: 
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1. Minimization of the Koenker-Bassett Error (see, Koenker and Bassett (1978)); 
 

2. Decomposition Theorem using CVaR deviation from Quantile Quadrangle, see Rockafellar and Uryasev 

(2013) and Rockafellar, et al. (2008).   
 

The first method solves the following quantile regression minimization problem: 

 

.)),((_minarg θxx
x

Lerrkb 
       (CS.1) 

 
The Koenker-Bassett error is an element of Quantile-Based Risk Quadrangle defined in Rockafellar and Uryasev 

(2013). The Risk Quadrangle methodology combines risk functions for a random value Y  in groups (Quadrangles) 

consisting of five elements.  
 

Further we provide list functions of the Quantile Quadrangle for ).1,0(   See, Rockafellar and Uryasev (2013)):  

 

      Statistic:   )()( XVaRXS    = VaR (quantile) Statistic; 

      Risk:   CXCXCVaRXR
C

  min)()(  = CVaR Risk; 

      Deviation:   CXXEXCVaRXCVaRXD
C

 

 min][)()()(  = CVaR Deviation; 

      Regret:     


 XEX



1

1
  = average absolute loss, scaled; 

      Error:       XEXXXEX 





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
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 



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 =  normalized Koenker-Bassett Error. 

 

The quantile regression based on Quantile Quadrangle methodology and decomposition theorem, solves the 

problem in two steps. 
 

Step 1. Find an optimal vector Ta

I

aa xx ),(~
1 x  by minimizing CVaR deviation: 

))~((min))~((min 00 xx
xx

ZCVaRZD   ,    (CS.2) 

where θxx
~~)~( 00

TZ  . 

 

Step 2. Calculate intercept,

0x , 

))~(())~(( 000








xx ZVaRZSx  .     (CS.3) 

 
 
 

 

 

Optimization Problem 1 

 

minimizing Koenker-Bassett error   
 

)},((_{minˆ θxx
x

Lerrkb      .   (CS.4) 

 

The minimization problem (CS.4) is reformulated with PSG Partial Moment Functions, pm_pen and pm_pen_g.  
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Optimization Problem 2 

 

minimizing Koenker-Bassett error presented with Partial Moments   
 

 

),0)},((__)1(),0),((_{min θxθx
x

LgpenpmLpenpm   .   (CS.5) 

 

 

 

Two step procedure is implemented with PSG functions, CVaR Deviation (cvar_dev) and VaR Risk (var_risk).  

 

Optimization Problem 3 

 

Step 1. 
minimizing CVaR deviation 

})~((_{min 0 x
x

Zdevcvar  .     (CS.6) 

Step 2. 

))~(( *

00 xZvar_riskx 
  .      (CS.7) 
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