
CACE STUDY: Shortest Path in a Stochastic Weighted Graph using Average, CVaR, POE, bPOE 

(avg, cvar, pr_pen, bpoe) 

Background 

The case study is based on paper by Jordan and Uryasev [13]. We consider four stochastic formulations of 

the shortest path problem. The shortest path problem finds a shortest route from a starting point to a final 

point. Such problems are usually formulated with a graph consisting of a set of vertices (nodes) and arcs 

(edges) connecting vertices. The deterministic shortest path problem finds a path from a starting point to a 

final point with the minimal weight. There are many efficient algorithms for finding shortest path: Dijkstra 

[1], Bellman-Ford [2], [3], Lawler [4], Floyd-Warshall [5], [6]. 

Weights of arcs in a stochastic weighted graph are random. The problem of determining the probability 

distribution of the shortest path length was studied in [7] and [8]. Paper [9] considers the problem, where the 

optimal path maximizes a quadratic expected utility. Papers [10], [11] study stochastic shortest path 

problems with different types of cost functions. Paper [12] considers the so called expected shortest path, 𝛼-

shortest path, and the “most shortest” path problems. 

This case study solves the following problems. We find a path with the minimal: 

1) Expected cost (length); 

2) Conditional Value-at-Risk (CVaR) of the path cost with a specified confidence level; 

3) Probability of Exceedance (POE) of the path cost with a specified threshold; 

4) Buffered Probability of Exceedance (bPOE) of the path cost with a specified threshold. 

We started with a deterministic dataset including a distance matrix with pairwise distances between 58 

nodes. The data are actual flying distances between 58 U.S. Air Force bases located throughout the world. In 

practice, these distances may vary due to a variety of factors including weather, airspace considerations, 

operational concerns, etc. We have generated a stochastic variant of this dataset as follows. We divided all 

arcs in three groups and considered three independent standardly distributed normal random values 𝜉𝑖, 𝑖 =

1,2,3, corresponding to each group. Distances in these three groups were randomized by these three random 

values. For randomization we used the truncated normal distributions with the lower and upper bounds, -0.9 

and 0.9, i.e., 𝜉𝑖 ∈ [−0.9,0.9], 𝑖 = 1,2,3. Random samples of weights in 𝑖-th group were obtained by 

multiplying deterministic weights corresponding to arcs in each group by (1 + 𝜉𝑖), 𝑖 = 1,2,3. We generated 

1000 scenarios of the distance matrix.  
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Notations 

𝑉 = set of vertices (nodes); 

𝐴= set of arcs (edges) connecting vertices; 

𝐼= number of nodes in the set 𝑉; 

𝑣𝑖 = 𝑖-th node in the set 𝑉,  (𝑣𝑖 ∈ 𝑉), 𝑖 = 1, … , 𝐼; 

𝐺 = (𝑉, 𝐴) = weighted graph; 

{𝑣𝑖, 𝑣𝑗} ∈ 𝐴 = arc connecting nodes 𝑣𝑖 and 𝑣𝑗; 

𝒙 = {𝑥𝒊𝒋|{𝑖, 𝑗} ∈ 𝐴} = vector of binary variables, where 𝑥𝒊𝒋 = 1 if the arc {𝑖, 𝑗} belongs to a path, and𝑥𝒊𝒋 = 0, 

       otherwise; 

𝜉𝑖𝑗 = random weight of the arc connecting nodes 𝑣𝑖 and 𝑣𝑗, (𝑣𝑖, 𝑣𝑗  ∈ 𝑉), 𝑖, 𝑗 = 1, … , 𝐼. Depending on an  

        application, the weight can be travel time, cost, etc.; 

𝑑 = {𝑣0, 𝑣1, … , 𝑣𝑘} = path, connecting nodes 𝑣0 and 𝑣𝑘 in the graph 𝐺, with arcs 

       {𝑣0, 𝑣1}, {𝑣1, 𝑣2}, … , {𝑣𝑘−1, 𝑣𝑘} ∈ 𝐴; 

𝜉(𝑑) = [∑ 𝜉𝑖𝑗𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 ] = random cost of a path; 

𝐸[∑ 𝜉𝑖𝑗𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 ] = average (expected) cost of a path; 

𝑝̅𝑇[∑ 𝜉𝑖𝑗𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 ] = Buffered Probability of Exceedance 𝑇 by cost of a path; 

𝑞̅𝛼[∑ 𝜉𝑖𝑗𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 ] = Conditional Value-at-Risk of cost of a path with confidence level 𝛼. 

𝑝𝑇[∑ 𝜉𝑖𝑗𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 ] = Probability of Exceedance 𝑇 by cost of a path; 

 

The first problem finds a path with the minimal expected cost (length). 

Problem 1  

min
𝒙

𝐸[∑ 𝜉𝑖𝑗𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 ]      (1) 

subject to: 

∑ 𝑥1𝑗 − ∑ 𝑥𝑗1 = 1,(𝑗,1)∈𝐴(1,𝑗)∈𝐴       (2) 

∑ 𝑥𝑖𝑗 − ∑ 𝑥𝑗𝑖 = 0,     2(𝑗,𝑖)∈𝐴(𝑖,𝑗)∈𝐴 ≤ 𝑖 ≤ 𝑛 − 1,     (3) 

∑ 𝑥𝑛𝑗 − ∑ 𝑥𝑗𝑛 = −1,(𝑗,𝑛)∈𝐴(𝑛,𝑗)∈𝐴      (4) 

𝑥𝑖𝑗 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐴.      (5) 

 

 

The following problem finds a path with a minimal CVaR of the path cost.  

Problem 2. 

min
𝒙

𝑞̅𝛼[∑ 𝜉𝑖𝑗𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 ]      (11) 

subject to: 

∑ 𝑥1𝑗 − ∑ 𝑥𝑗1 = 1,(𝑗,1)∈𝐴(1,𝑗)∈𝐴      (12) 



∑ 𝑥𝑖𝑗 − ∑ 𝑥𝑗𝑖 = 0,     2(𝑗,𝑖)∈𝐴(𝑖,𝑗)∈𝐴 ≤ 𝑖 ≤ 𝑛 − 1,    (13) 

∑ 𝑥𝑛𝑗 − ∑ 𝑥𝑗𝑛 = −1,(𝑗,𝑛)∈𝐴(𝑛,𝑗)∈𝐴      (14) 

𝑥𝑖𝑗 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐴.      (15) 

 

 

The following problem finds a path with minimal POE of the path cost with a specified threshold T.  

Problem 3.  

min
𝒙

𝑝𝑇 [∑ 𝜉𝑖𝑗𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 ]      (6) 

subject to: 

∑ 𝑥1𝑗 − ∑ 𝑥𝑗1 = 1,(𝑗,1)∈𝐴(1,𝑗)∈𝐴      (7) 

∑ 𝑥𝑖𝑗 − ∑ 𝑥𝑗𝑖 = 0,     2(𝑗,𝑖)∈𝐴(𝑖,𝑗)∈𝐴 ≤ 𝑖 ≤ 𝑛 − 1,    (8) 

∑ 𝑥𝑛𝑗 − ∑ 𝑥𝑗𝑛 = −1,(𝑗,𝑛)∈𝐴(𝑛,𝑗)∈𝐴     (9) 

𝑥𝑖𝑗 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐴.     (10) 

 

Finale problem finds a path with the minimum bPOE of the path cost with a specified threshold T.  

Problem 4. 

min
𝒙

𝑝̅𝑇[∑ 𝜉𝑖𝑗𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 ]      (6) 

subject to: 

∑ 𝑥1𝑗 − ∑ 𝑥𝑗1 = 1,(𝑗,1)∈𝐴(1,𝑗)∈𝐴      (7) 

∑ 𝑥𝑖𝑗 − ∑ 𝑥𝑗𝑖 = 0,     2(𝑗,𝑖)∈𝐴(𝑖,𝑗)∈𝐴 ≤ 𝑖 ≤ 𝑛 − 1,    (8) 

∑ 𝑥𝑛𝑗 − ∑ 𝑥𝑗𝑛 = −1,(𝑗,𝑛)∈𝐴(𝑛,𝑗)∈𝐴     (9) 

𝑥𝑖𝑗 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐴.      (10) 

 

 

Below we show results of solving Problem 1, 2, 3, 4 with different parameters (confidence levels 𝛼  and 

thresholds 𝑇) and calculating four functions CVaR, VaR, POE and bPOE with different parameters on 

optimal points of these Problems.  



                  Table 1. Optimization results for Problems 1, 2, 3, 4: starting node 1 and final node 58. 

 

Optimization Results  

Objective Functions 

Values of Risk Functions on Optimal Points 

CVaR VaR POE bPOE 

Risk 

Measure Parameter 

Optimal 

Value Time (sec) Parameter Value Parameter Value Parameter Value Parameter Value 

Average N/A 3149.32 0.06 0.9 4928.942 0.9 4413.2 4413.2 0.1 4928.942 0.1 

… … … … 0.95 5324.89 0.95 4730.8 4730.8 0.05 5324.89 0.05 

… … … … 0.99 6233.35 0.99 5542.0 5513.7 0.011 5714.379 0.027 

… … … … 0.995 6696.6 0.995 6031.7 5611.493 0.008 5859.674 0.02 

CVaR 0.9 4928.942 21.4 0.9 4928.942 0.9 4413.2 4413.2 0.1 4928.942 0.1 

CVaR 0.95 5324.890 22.99 0.95 5324.89 0.95 4730.8 4730.8 0.05 5324.89 0.05 

CVaR 0.99 5714.379 29.67 0.99 5714.379 0.99 5513.708 5513.7 0.01 5714.379 0.01 

CVaR 0.995 5859.674 31.91 0.995 5859.674 0.995 5611.493 5611.493 0.005 5859.674 0.005 

POE 4413.2 0.1 >4000 0.9 4928.942 0.9 4413.2 4413.2 0.1 4928.942 0.1 

POE 4730.8 0.05 >4000 0.95 5324.89 0.95 4730.8 4730.8 0.05 5324.890 0.05 

POE 5513.7 0.01 >4000 0.99 5714.379 0.99 5513.708 5513.7 0.01 5714.379 0.01 

POE 5611.493 0.005 >4000 0.995 5859.674 0.995 5611.493 5611.493 0.005 5859.670 0.005 

bPOE 4928.942 0.1 89.70 0.9 4928.942 0.9 4413.2 4413.2 0.1 4928.942 0.1 

bPOE 5324.89 0.05 85.37 0.95 5324.89 0.95 4730.8 4730.8 0.05 5324.89 0.05 

bPOE 5714.379 0.01 101.44 0.99 5714.379 0.99 5513.708 5513.7 0.01 5714.379 0.01 

bPOE 5859.674 0.005 94.65 0.995 5859.674 0.995 5611.493 5611.493 0.005 5859.674 0.005 

 



To begin with, we select a starting node 1 and a final node 58. We solve with PSG optimization Problems 1, 

2, 3, 4 and show results in Table 3. We select confidence levels 0.9, 0.95, 0.99, 0.995 for CVaR to observe 

sensitivity of the results to confidence level. Considered confidence levels are standardly used in risk 

management. CVaR is monotonic w.r.t. confidence level 𝛼. Table 3, column 3  shows that the lowest optimal 

values for CVaR equals 3149.32, because Average is actually CVaR with confidence level 𝛼 = 0 . We have 

observed also that the largest value of CVaR equals 5859.67, for the confidence level 𝛼 =0.995 . Therefore 

threshold levels for bPOE (which is the inverse function of CVaR) were selected in the range 3149.32 - 

5859.67.  In particular, we considere bPOE with thresholds 4928.942, 5324.89, 5714.38, 5859.67, which are 

equal to the optimal CVaR values with confidence levels 0.9, 0.95, 0.99, 0.995, see Table 3. This selection 

was done for verification purposes, because it is known that the minimal bPOE value with threshold 

4928.942 should be equal to 0.1, since CVaR_0.9 = 4928.942 . Similar we know that the optimal values for 

bPOE with thresholds 5324.89, 5714.38, 5859.67 should be equal to 0.05, 0.01, 0.005, accordingly. We 

observe that the PSG solver correctly found the minimal bPOE values, as it is stated in the third column of 

Table 3. Regarding the computation times, Table 3, column 4 shows that computation times for bPOE 

minimization are about 3-4 times larger than CVaR minimization. The reason for this is that bPOE solution 

is obtained by running several CVaR optimization problems. So, after 3-4 runs of CVaR optimization the 

algorithm finds appropriate confidence lebel, which delivers minimal bPOE. We optimized also POE with 

thresholds 4413.2, 4730.8, 5513.7, 5611.493. These thresholds are POE values on optimal CVaR points, see 

Table 3. PSG automatically reduced the POE minimization problem to linear MIP. Maximal solution time 

was set to 4000 sec. We observe that during this time the MIP solver has not improved the solution coming 

from CVaR optimization. This observation confirms the fact that CVaR and bPOE minimization are 

considerably faster that POE minimization. 

 

Table 2. Optimal paths for optimization problems: starting node 1 and final node 58. 

 

Risk Function Parameter Optimal Path 

Average N/A 1-58 

CVaR 0.90 1-58 

CVaR 0.95 1-58 

CVaR 0.99 1-2-43-13-44-51-58 

CVaR 0.995 1-2-43-13-44-51-58 

POE 4413.2 1-58 

POE 4730.8 1-58 

POE 5513.7 1-2-43-13-44-51-58 

POE 5611.49 1-2-43-13-44-51-58 

bPOE 4928.942 1-58 

bPOE 5324.89 1-58 

bPOE 5714.379 1-2-43-13-44-51-58 

bPOE 5859.674 1-2-43-13-44-51-58 

              

 

Table 4 shows that for the small values of parameters of considered functions, the solution is trivial, 1-58 . 

However, when risk requirements are getting more stringent, the solution includes 6 arks, 1-2-43-13-44-51-

58. This shows that risk averseness results in a different shortest path. 

 


