CASE STUDY: Checkerboard Copula Defined by Spearman Rho Coefficients (entropyr)

Background

An m-dimensional copula where $m \geq 2$, is a continuous, m-increasing, probability distribution function $\mathrm{C}:[0,1]^{\mathrm{m}} \rightarrow[0,1]$ on the unit m-dimensional hyper-cube with uniform marginal probability distributions. A checkerboard copula is a distribution with a corresponding density $c:[0,1]^{m} \rightarrow[0, \infty)$ defined almost everywhere by a step function on an m-uniform subdivision of the hyper-cube. I.e., the checkerboard copula is a distribution on the unit hypercube $[0,1]^{m}$ defined by subdividing the hyper-cube into n^{m} identical small hyper-cubes I_{i} with constant density on each one. It is supposed that the density on $I_{\boldsymbol{i}}$, where $\boldsymbol{i}=\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ is defined by the expression $n^{m-1} h_{i}$, where h_{i} is an element of hyper-matrix $\boldsymbol{h}=\left[h_{i}\right] \in \boldsymbol{R}^{\boldsymbol{n}^{m}}$ with $h_{\boldsymbol{i}} \in[0,1]$. This case study demonstrates how to build a join distributions for correlated losses with known Spearman's rank correlation coefficients (which are called also grade correlation coefficients). If x_{r} are observations from a real valued random variable X_{r} with cumulative distribution function F_{r}, then the grade of x_{r} is given by $u_{r}=F_{r}\left(x_{r}\right)$. The grade u_{r} can be regarded as an observation of the uniform random variable $U_{r}=F_{r}\left(x_{r}\right)$ on $[0,1]$ with mean $1 / 2$ and variance $1 / 12$. The grade correlation coefficient for the continuous random variables X_{r} and X_{s} where $r<s$ is defined as the correlation for the grade random variables $U_{r}=F_{r}\left(x_{r}\right)$ and $U_{s}=$ $F_{s}\left(x_{s}\right)$ by the formula

$$
\rho_{r s}=\frac{E\left[\left(U_{r}-1 / 2\right)\left(U_{s}-1 / 2\right)\right]}{E\left[\left(U_{r}-1 / 2\right)^{2}\right]^{1 / 2} E\left[\left(U_{s}-1 / 2\right)^{2}\right]^{1 / 2}}=12\left(E\left[U_{r} U_{s}\right]-1 / 4\right) .
$$

The Spearman rho correlation coefficient for the checkerboard copula is given by

$$
\rho_{r s}=12\left(\frac{1}{n^{3}} \sum_{i \in\{1,2, \ldots, n\}^{m}} h_{i}\left(i_{r}-1 / 2\right)\left(i_{s}-1 / 2\right)-1 / 4\right) .
$$

We present an optimization problem statement and results of optimization for the following example problem. We wish to select a multiply stochastic hyper-matrix $\boldsymbol{h}=\left[h_{i}\right]$ to match known grade correlation coefficients $\rho_{r s}$ in such a way that the entropy is maximized. We solved the problem with $m=5$ and $n=4,6,8,10$.

References

[1] Kuzmenko, V., Salam, R., Pavlikov, K., Uryasev, S. Checkerboard copula defined by sums of random variables. In preparation.
[2] Nelsen, R. B.: An Introduction to Copulas. Springer Lecture Notes in Stat., New York (1999).
[3] Piantadosi, J., Howlett, P., and Borwein, J. (2012). Copulas with maximum entropy Optimization Letters, 6, 99-125.
[4] Boland, J., Howlett, P., Piantadosi, J., and R. Zakaria. (2016). Modelling and simulation of volumetric rainfall for a catchment in the Murray-Darling basin, ANZIAM J, 58 2, 119-142.
[4] Borwein J., Howlett, Piantadosi, J. (2014). Modelling and simulation of seasonal rainfall using the principle of maximum entropy, Entropy, 16, 2, 747-769.

Notations

$m=5$ number of random values;
$n=$ number of sub-intervals in the partition of the interval [0,1];
$0=a(1)<a(2)<\cdots<a(n+1)=1$ is the partition of the interval [0,1],
where, $a(j)=\frac{j-1}{n}, j=1, \ldots . n+1$;
$n^{m}=$ number of identical small hyper-cubes in the unit hyper-cube;
$I_{\boldsymbol{i}}=\boldsymbol{i}$-th small hyper-cube, $\boldsymbol{i}=\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right)$;
$\boldsymbol{h}=\left[h_{i}\right]=\left[h_{i_{1} i_{2} i_{3} i_{4} i_{5}}\right]=$ hyper-matrix with $h_{i_{1} i_{2} i_{3} i_{4} i_{5}} \in[0,1] ;$
$\pi_{r}^{c} \boldsymbol{x}= \begin{cases}\left(x_{2}, \ldots, x_{m}\right) & \text { if } r=1 \\ \left(x_{1}, \ldots x_{r-1}, x_{r+1}, \ldots, x_{m}\right) & \text { if } r=2, \ldots, m-1=\text { complementary projection of } R^{m} \rightarrow R^{m-1} ; \\ \left(x_{1}, \ldots, x_{m-1}\right) & \text { if } r=m\end{cases}$
$J(\boldsymbol{h})=(-1)\left[\frac{1}{n} \sum_{i \in\{1,2, \ldots, n\}^{5}} h_{\boldsymbol{i}} \log _{e} h_{\boldsymbol{i}}+(m-1) \log _{e}\right]=$ entropy of \boldsymbol{h}.

Maximization of $J(\boldsymbol{h})$ is equivalent to maximization of $(-1) \sum_{i \in\{1,2, \ldots, n\}^{5}} h_{i} \log _{e} h_{i}$.

Optimization Problem

find hyper-matrix \boldsymbol{h} maximizing

$$
\max _{\boldsymbol{h}}(-1) \sum_{i \in\{1,2, \ldots, n\}^{5}} h_{\boldsymbol{i}} \log _{e} h_{\boldsymbol{i}}
$$

subject to constraints

$$
\begin{gathered}
12\left(\frac{1}{n^{3}} \sum_{i \in\{1,2, \ldots, n\}^{5}} h_{i}\left(i_{r}-1 / 2\right)\left(i_{s}-1 / 2\right)-1 / 4\right)=\rho_{r s}, \quad 1 \leq r<s \leq 5 \\
\sum_{\pi_{r}^{c} i \in\{1,2, \ldots n\}^{4}} h_{i}=1, \quad i_{r} \in\{1,2, \ldots, n\}, \quad r=1, \ldots, 5 \\
h_{i} \geq 0, \quad i \in\{1,2, \ldots, n\}^{5}
\end{gathered}
$$

