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Introduction

Decision making problems under uncertainty lead to Minimax equations.
This talk discusses continuity properties of minimax equations and their
solutions.

Let us consider a classic problem, when a decision maker minimizes the
worst possible losses. The objective function is

v](x) := inf
a∈ΦA(x)

sup
b∈ΦB(x,a)

f(x, a, b),

where
x is the state of the nature;
ΦA(x) is the decision set;
ΦB(x, a) is the set of possible values of parameters;
f(x, a, b) is the payoff.

Applications:
Robust optimization, Optimization of risk measures (coherent risk
measures, bPOE)
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Introduction

Let X, A, and B be Borel subsets of Polish (complete, separable, metric) spaces,
ΦA : X 7→ 2A \ {∅} and ΦB : X× A 7→ 2B \ {∅} be set-valued mappings defining
feasible sets for values a and b, and f : X× A× B 7→ R be the payoff function.

Consider the minimax function

v](x) := inf
a∈ΦA(x)

sup
b∈ΦB(x,a)

f(x, a, b).

What can be said about continuity of the minimax functions v](x), the function
f ](x, a) := sup

b∈ΦB(x,a)

f(x, a, b), and solution multifunctions

Φ∗A(x) := Argmina∈ΦA(x) f
](x, a) and Φ∗B(x, a) := Argmaxb∈ΦB(x,a) f(x, a, b)?

When are the sets Φ∗A(x) and Φ∗B(x, a) nonempty? When are these sets compact?

What can we say about solutions of sequential versions of such problems?
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Introduction

The classic Berge theorem and Berge’s maximum theorem give answers to
continuity questions for optimization problems

v(x) = inf
a∈ΦA(x)

f(x, a) (1)

under the assumption that all the sets ΦA(x) are compact.

F., Kasyanov, Zadoianchuk (2013) and F., Kasyanov, Voorneveld (2014)
generalized Berge’s theorem and Berge’s maximum theorem to possibly
noncompact action sets. The generalizations were obtained by introducing
the notion of K-inf-compact functions.

This talk discusses continuity properties for minimax problems. Observe
that (1) is a particular case of the minimax problem, when each set
ΦB(x, a) is a singleton.
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Introduction

Berge’s theorems for noncompact decision sets and Fatou’s lemma for
variable probabilities provided new tools for solving problems in stochastic
optimization, control, game theory, and their applications.

Real Analysis MDPs/Games Inventory Control
Berge’s maximum Optimality conditions The structure of

theorem for general for MDPs with optimal policies for
(possibly noncompact) general action sets setup-cost models

decision sets Optimality conditions with backorders
Fatou’s lemma for for POMDPs and total costs
variable measures Optimality conditions Optimality conditions
Uniform Fatou’s for turn-based games for average-cost

lemma (robust optimization) models with setup
with general costs and backorders
action sets Inventory Control

Minimax equalities with incomplete
for games with records

general action sets
and unbounded

payoffs
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Preliminaries

Let R := R ∪ {±∞}, S be a metric space, S ⊂ S be a nonempty set.

Let K(S) be the family of all nonempty compact subsets of S.
A function f : S ⊂ S 7→ R is called lower semi-continuous at s ∈ S, if
for each sequence {s(n)}n=1,2,... ⊂ S, that converges to s in S, the
inequality lim infn→∞ f(s(n)) ≥ f(s) holds.

A function f : S ⊂ S 7→ R is called upper semi-continuous at s ∈ S, if
−f is lower semi-continuous at s ∈ S.
A function f : S ⊂ S 7→ R is called lower / upper semi-continuous, if
f is lower / upper semi-continuous at each s ∈ S.
Consider the level sets Df (λ;S) := {s ∈ S : f(s) ≤ λ}, λ ∈ R.
A function f : S ⊂ S 7→ R is called inf-compact on S, if all the level
sets {Df (λ;S)}λ∈R are compact in S.
A function f : S ⊂ S 7→ R is called sup-compact on S, if −f is
inf-compact on S.
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K-inf-compactness

Let X and Y be metric spaces, Z ⊂ X be a nonempty set, Φ : X 7→ 2Y be a set-valued mapping
with Dom Φ := {x ∈ X : Φ(x) 6= ∅} 6= ∅, and
GrZ(Φ) = {(x, y) ∈ Z × Y : x ∈ Dom Φ, y ∈ Φ(x)}. Note that Gr(Φ) := GrX(Φ).

Definition 1 (K-inf-compact function; F., Kasyanov, and Zadoianchuk 2012, F. 2016)

A function f : Gr(Φ) ⊂ X× Y 7→ R is called K-inf-compact on Gr(Φ), if for every
C ∈ K(Dom Φ) this function is inf-compact on GrC(Φ).

Necessary and Sufficient conditions for K-inf-compactness

The function f : Gr(Φ) ⊂ X× Y 7→ R is K-inf-compact on Gr(Φ) if and only if the following
two assumptions hold:

(i) f : Gr(Φ) ⊂ X× Y 7→ R is lower semi-continuous;

(ii) if a sequence {x(n)}n=1,2,... with values in Dom Φ converges in X and its limit x belongs

to Dom Φ, then each sequence {y(n)}n=1,2,... with y(n) ∈ Φ(x(n)), n = 1, 2, . . . ,

satisfying the condition that the sequence {f(x(n), y(n))}n=1,2,... is bounded above, has
a limit point y ∈ Φ(x).

Definition 2 (K-sup-compact function)

A function f : Gr(Φ) ⊂ X× Y 7→ R is called K-sup-compact on Gr(Φ), if the function −f is
K-inf-compact on Gr(Φ).
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K-inf-compactness: Examples

The real function f is K-inf-compact and continuous on Gr(Φ), but it is
not inf-compact on Gr(Φ) :

X := R,
Y := R,
Φ(x) := R+ = [0,+∞),

f(x, y) := x+ y for each x ∈ R and y ∈ R+;

or

f(x, y) := |x− y| for each x ∈ R and y ∈ R+.

These functions are not inf-compact because the sets
{(x, y) ∈ R× R+ : x+ y ≤ 0} and {(x, y) ∈ R× R+ : x = y} are not
compact.
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K-inf-compactness

Inventory control cost function:

Let X := R, Y := R+,

f(x, y) = KI{y > 0}+ cy + Eh(x+ y −D),

where K > 0, c > 0, h : R 7→ R+ is continuous with h(x)→ +∞ as
|x| → +∞, and D is a nonnegative random variable (demand) with
ED < +∞.

f : Rn × Rm 7→ R is proper, lower semi-continuous, and f(x, y) is
level-bounded in x locally uniformly in y (Rockafellar and Wets).
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Continuity of Multifunctions: Classic Definitions

A set-valued mapping F : X 7→ 2Y is upper semi-continuous at
x ∈ DomF if, for each neighborhood G of the set F (x), there is a
neighborhood of x, say U(x), such that F (x∗) ⊂ G for all
x∗ ∈ U(x) ∩DomF.
A set-valued mapping F : X 7→ 2Y is lower semi-continuous at
x ∈ DomF if, for each open set G with F (x) ∩ G 6= ∅, there is a
neighborhood of x, say U(x), such that if x∗ ∈ U(x) ∩DomF, then
F (x∗) ∩ G 6= ∅.
A set-valued mapping F : X 7→ 2Y is called upper / lower
semi-continuous, if it is upper / lower semi-continuous at all
x ∈ DomF.
A set-valued mapping F : X 7→ 2Y is called continuous (at
x ∈ DomF ), if it is upper semi-continuous and lower semi-continuous
(at x).

A set-valued mapping F : X 7→ 2Y \ {∅} is lower semicontinuous at
x ∈ DomF iff for each sequence xn → x with xn ∈ DomF, each
a ∈ F (x) is a limit point of a sequence {an} with an ∈ F (xn).
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Sufficient Conditions for K-inf-compactness

Sufficient Conditions for K-inf-compactness

Let Φ : X 7→ 2Y be a set-valued mapping and f : Gr(Φ) ⊂ X× Y 7→ R be
a function. Then the following statements hold:

(a) if f : Gr(Φ) ⊂ X× Y 7→ R is inf-compact on Gr(Φ), then the
function f is K-inf-compact on Gr(Φ);

(b) if f : Gr(Φ) ⊂ X× Y 7→ R is lower semi-continuous and Φ : X 7→ 2Y

is upper semi-continuous and compact-valued at each x ∈ Dom Φ,
then the function f is K-inf-compact on Gr(Φ).

Sufficient Condition (b) can be rephrased in the following form: If
conditions of Berge’s maximum theorem hold, then the function f is
K-inf-compact.
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Continuity Properties of Minima: Berge’s Theorem

(1) Berge’s theorem for possibly noncompact action sets (F., Kasyanov, and
Zadoianchuk 2013)

If the function f : X× Y 7→ R is K-inf-compact on Gr(Φ), then the function

f∗(x) = min
y∈Φ(x)

f(x, y)

is lower semi-continuous, and the set Φ∗(x) = Argminy∈Φ(x) f(x, y) is compact, if
f∗(x) < +∞, and Φ∗(x) = Φ(x) if f∗(x) = +∞.

If X = Rn, Y = Rm, and Φ(x) = Rm, this theorem becomes the Parametric Optimization
Theorem in Rockafellar and Wets; the speaker thanks Johannes Royset for pointing this out.

(2) Berge’s theorem

If the function f : X× Y 7→ R and the set-valued mapping Φ(x) satisfy the following properties:

(i) f is lower semi-continuous;

(ii) the sets Φ(x) are compact for all x ∈ X;

(iii) the set-valued mapping x 7→ Φ(x) is upper semi-continuous;

then the function f∗ is lower semi-continuous.

Advantages of (1) compared to (2): (1) is more general and it is much easier to verify the

K-inf-compactness of f than the upper semi-continuity of the set-valued mapping Φ. 13 / 31



Continuity Properties of Minima: Berge’s Maximum
Theorem

Berge’s maximum theorem for possibly noncompact action sets
(F., Kasyanov, and Voorneveld 2014)

If

(i) Φ : X 7→ 2Y \ {∅} is a lower semi-continuous set-valued mapping;

(ii) f : X× Y 7→ R is a K-inf-compact and upper semi-continuous function on Gr(Φ),

then the function
f∗(x) = inf

y∈Φ(x)
f(x, y)

is continuous and the set-valued mapping Φ∗(x) = Argminy∈Φ(x) f(x, y) is upper
semi-continuous and compact-valued.

Berge’s maximum theorem
If

(i) Φ : X 7→ 2Y \ {∅} is a continuous compact-valued mapping;

(ii) f : X× Y 7→ R is a continuous function;

then the function f∗ is continuous and the set-valued mapping Φ∗ is upper semi-continuous and
compact-valued.
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Continuity Properties of Minima: Useful Facts

Upper semi-continuity of the minimum (Hu and Papageorgiou
1997)

If a set-valued mapping Φ : X 7→ 2Y \ {∅} is lower semi-continuous and a
function f : Gr(Φ) ⊂ X×Y 7→ R is upper semi-continuous, then the value
function f∗ : X 7→ R,

f∗(x) = inf
y∈Φ(x)

f(x, y), (2)

is upper semi-continuous.

Consider a function f : X× Y 7→ R. If f(x, y) is upper semi-continuous in
x for each y, then the value function f∗(x) is upper semi-continuous.
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Continuity Properties of Minima: Useful Facts

Properties of continuous minima (F., Kasyanov and Voorneveld 2014, F. and
Kasyanov 2015)

Let Φ : X 7→ 2Y \ {∅}, a function f : Gr(Φ) ⊂ X× Y 7→ R be K-inf-compact on Gr(Φ),
and the value function f∗ : X 7→ R ∪ {−∞} be continuous. Then the infimum in

f∗(x) = inf
y∈Φ(x)

f(x, y)

can be replaced with the minimum and the solution multifunction Φ∗ : X 7→ 2Y \ {∅},

Φ∗(x) = {y ∈ Φ(x) : f∗(x) = f(x, y)},

is compact-valued and upper semi-continuous.

Continuity of Minima

Let Φ(x) = Y for each x ∈ X and the function f : X× Y 7→ R is K-inf-compact on
Gr(Φ). Then the function f∗(x) is continuous and the set-valued mapping Φ∗(x) is
upper semi-continuous and compact-valued.

The last theorem implies that the value function for the inventory control problem is
continuous. 16 / 31



Continuity Properties of Minimax: Notations

Let X, A and B be metric spaces;
ΦA : X 7→ 2A \ {∅} and ΦB : Gr(ΦA) ⊂ X× A 7→ 2B \ {∅} be set-valued
mappings;
f : Gr(ΦB) ⊂ X× A× B 7→ R be a function;
the worst-loss function at (x, a) ∈ Gr(ΦA) :

f](x, a) := sup
b∈ΦB(x,a)

f(x, a, b); (3)

the minimax function at x ∈ X:

v](x) := inf
a∈ΦA(x)

sup
b∈ΦB(x,a)

f(x, a, b); (4)

the solution multifunctions at x ∈ X and a ∈ ΦA(x):

Φ∗A(x) :=
{
a∗ ∈ ΦA(x) : v](x) = f](x, a∗)

}
; (5)

Φ∗B(x, a) :=
{
b ∈ ΦB(x, a) : f](x, a) = f(x, a, b)

}
. (6)
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Continuity Properties of Minimax: Preliminaries

The set-valued mapping ΦA↔B
B : X× B 7→ 2A is uniquely defined by

Gr(ΦA↔B
B ) := {(x, b, a) ∈ X× B× A : (x, a, b) ∈ Gr(ΦB)}. (7)

The function fA↔B : Gr(ΦA↔B
B ) ⊂ (X× B)× A 7→ R is defined as

fA↔B(x, b, a) := f(x, a, b), (x, a, b) ∈ Gr(ΦB). (8)

The following equality holds:

Dom ΦA↔B
B = projX×BGr(ΦB), (9)

where projX×BGr(ΦB) is a projection of Gr(ΦB) on X× B.

Sufficient Conditions for K-inf-compactness of fA↔B

The function fA↔B : Gr(ΦA↔B
B ) ⊂ (X× B)× A 7→ R is K-inf-compact on Gr(ΦA↔B

B ) if and only if
the following two conditions hold:

(i) the function f : Gr(ΦB) ⊂ X× A× B 7→ R is lower semi-continuous;

(ii) if a sequence {x(n), b(n)}n=1,2,... with values in Dom ΦA↔B
B converges and its limit (x, b)

belongs to Dom ΦA↔B
B , then each sequence {a(n)}n=1,2,... with

(x(n), a(n), b(n)) ∈ Gr(ΦB), n = 1, 2, . . . , satisfying the condition that the sequence
{f(x(n), a(n), b(n))}n=1,2,... is bounded above, has a limit point a ∈ ΦA(x).
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Continuity Properties of Minimax: Preliminaries

Recall that a set-valued mapping ΦB : Gr(ΦA) ⊂ X× A 7→ 2B \ {∅} is lower semicontinuous iff for
each x ∈ X and a ∈ ΦA(x), for every sequence (xn, an)→ (x, a) with xn ∈ X, an ∈ ΦA(xn),
every b ∈ ΦB(x, a) is a limit point of a sequence {bn} with bn ∈ ΦB(xn, an).

Definition 3 (A-lower semi-continuity)

A set-valued mapping ΦB : Gr(ΦA) ⊂ X× A 7→ 2B \ {∅} is called A-lower semi-continuous, if the
following condition holds:

if a sequence xn → x with xn, x ∈ X, and a ∈ ΦA(x), an ∈ ΦA(xn), then each b ∈ ΦB(x, a)
is a limit point of a sequence {bn}n=1,2,... with bn ∈ ΦB(xn, an).

Sufficient conditions for A-lower semi-continuity

Let ΦB : Gr(ΦA) ⊂ X× A 7→ 2B \ {∅} be a lower semi-continuous set-valued mapping. Then the
following statements hold:

(a) if ΦA : X 7→ 2A \ {∅} is upper semi-continuous and compact-valued at each x ∈ X, then
ΦB : Gr(ΦA) ⊂ X× A 7→ 2B \ {∅} is A-lower semi-continuous;

(b) if ΦB(x, a) does not depend on a ∈ ΦA(x) for each x ∈ X, that is, ΦB(x, a∗) = ΦB(x, a∗) for
each (x, a∗), (x, a∗) ∈ Gr(ΦA), then ΦB : Gr(ΦA) ⊂ X× A 7→ 2B \ {∅} is A-lower
semi-continuous.
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Continuity Properties of the Worst-Loss Function f](x, a) := sup
b∈ΦB(x,a)

f(x, a, b)

K-inf-compactness of the worst-loss function

Let ΦB : Gr(ΦA) ⊂ X× A 7→ 2B \ {∅} be an A-lower semi-continuous set-valued mapping and the
function fA↔B : Gr(ΦA↔B

B ) ⊂ (X× B)× A 7→ R be K-inf-compact on Gr(ΦA↔B
B ). Then the

worst-loss function f] : Gr(ΦA) ⊂ X× A 7→ R is K-inf-compact on Gr(ΦA).

Upper semi-continuity of the worst-loss function

If a function f : Gr(ΦB) ⊂ (X× A)× B 7→ R is K-sup-compact on Gr(ΦB), then the worst-loss
function f] : Gr(ΦA) ⊂ X× A 7→ R is upper semi-continuous. Moreover, the supremum in the
definition of f](x, a) can be replaced with the maximum and the solution multifunction
{Φ∗B (x, a)}(x,a)∈Gr(ΦA) satisfies the following properties:

(a) the graph Gr(Φ∗B ) is a Borel subset of X× A× B;

(b) if f](x, a) = −∞, then Φ∗B (x, a) = ΦB(x, a), and, if f](x, a) > −∞, then Φ∗B (x, a) is
compact.

Continuity of the worst-loss function

Let ΦB : Gr(ΦA) ⊂ X× A 7→ 2B \ {∅} be a lower semi-continuous set-valued mapping,
f : Gr(ΦB) ⊂ (X× A)× B 7→ R be a K-sup-compact function on Gr(ΦB), and the function
fA↔B : Gr(ΦA↔B

B ) ⊂ (X× B)× A 7→ R be K-inf-compact on Gr(ΦA↔B
B ). Then the worst-loss

function f] : Gr(ΦA) ⊂ X× A 7→ R is continuous.
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Continuity Properties of Minimax

Lower Semi-continuity of Minimax

Let ΦB : Gr(ΦA) ⊂ X× A 7→ 2B \ {∅} be an A-lower semi-continuous set-valued mapping and the
function fA↔B : Gr(ΦA↔B

B ) ⊂ (X× B)× A 7→ R be K-inf-compact on Gr(ΦA↔B
B ). Then the

minimax function
v](x) := inf

a∈ΦA(x)
sup

b∈ΦB(x,a)
f(x, a, b)

is lower semi-continuous and the set Φ∗A (x) = Argmina∈ΦA(x) sup
b∈ΦB(x,a)

f(x, a, b) is compact if

v](x) < +∞, and Φ∗A (x) = ΦA(x) if v](x) = +∞. Moreover, the graph Gr(Φ∗A ) is a Borel subset
of X× A.

Upper Semi-continuity of Minimax

Let ΦA : X 7→ 2A \ {∅}) be a lower semi-continuous set-valued mapping and
f : Gr(ΦB) ⊂ (X× A)× B 7→ R be a K-sup-compact function on Gr(ΦB). Then the minimax
function v] : X 7→ R is upper semi-continuous and the set Φ∗B (x, a) = Argmaxb∈ΦB(x,a) f(x, a, b)
is compact, if sup

b∈ΦB(x,a)
f(x, a, b) > −∞, and Φ∗B (x, a) = ΦB(x, a) if sup

b∈ΦB(x,a)
f(x, a, b) = −∞.

Moreover, the graph Gr(Φ∗B ) is a Borel subset of X× A× B.

21 / 31



Continuity Properties of Minimax

Continuity of Minimax and Solution Multifunctions

Let ΦA : X 7→ 2A \ {∅} be a lower semi-continuous set-valued mapping,
ΦB : Gr(ΦA) ⊂ X× A 7→ 2B \ {∅} be an A-lower semi-continuous set-valued mapping,
f : Gr(ΦB) ⊂ (X× A)× B 7→ R be a K-sup-compact function on Gr(ΦB), and the function
fA↔B : Gr(ΦA↔B

B ) ⊂ (X× B)× A 7→ R be K-inf-compact on Gr(ΦA↔B
B ). Then the worst-loss

function
f](x, a) := sup

b∈ΦB(x,a)
f(x, a, b)

is continuous, the minimax function

v](x) := inf
a∈ΦA(x)

sup
b∈ΦB(x,a)

f(x, a, b)

is continuous, the solution multifunction Φ∗A (x) = Argmina∈ΦA(x) sup
b∈ΦB(x,a)

f(x, a, b) is upper

semi-continuous and compact-valued, and the solution multifunction
Φ∗B (x, a) = Argmaxb∈ΦB(x,a) f(x, a, b) is upper semi-continuous and compact-valued.
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Zero-Sum Games with Perfect Information: Introduction

In a two-player zero-sum stochastic games with perfect information, Player II
knows the action chosen by Player I. This model is equivalent to the model of
turn-based games. This model is also called the robust Markov Decision Process.
For such games, it sufficient for players to use only pure strategies.

We consider the case of Borel state and action sets and the discounted criterion.
The problem is nontrivial when payoffs are not bounded. Such games have been
studied by several authors over long time including Küenle (1986), Petersen,
James, and Dupuis (2000) González-Trejo, Hernández-Lerma, and Hoyos-Reyes
(2003), Iyengar (2005), Jaśkiewicz and Nowak (2011, 2014) and summarized in
the survey by Jaśkiewicz and Nowak(2017).

We describe more general results. The higher level of generality is achieved by

applying the generalization of Berge’s maximum theorem to noncompact action

sets (Feinberg, Kasyanov, and Zadojanchuk 2013, Feinberg, Kasyanov, and

Voorneveld 2014, Feinberg and Kasyanov 2015) and their applications to minimax

equalities (Feinberg, Kasyanov, Zgurovsky 2017, 2018).
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Model Formulation

A discrete-time two-person zero-sum stochastic game with perfect information is defined
by a tuple {X,A,B, A,B, c, q},

X is the state space, which is a Borel subset of a Polish (complete separable
metric) space;

A is the action space of the Player I , which is a Borel subset of a Polish space;

B is the action space of the Player II , which is a Borel subset of a Polish space;

A(x) is the set of actions available to Player I at a state x ∈ X, where
A : X 7→ 2A \ {∅}. It is assumed that Gr(A) ∈ B(X× A) and there exist a
measurable mapping φA : X 7→ A such that φA(x) ∈ A(x) for each x ∈ X;

B(x, a) is the set of actions available to Player II at a state x ∈ X after Player I
chose the action a ∈ A(x), where B : Gr(A) 7→ 2B \ {∅}. It is assumed that
Gr(B) ∈ B(X× A× B) and there exist a measurable mapping φB : X× A 7→ B
such that φB(x, a) ∈ B(x, a) for each (x, a) ∈ Gr(A);

c(x, a, b) ∈ [−∞,+∞] is the payoff of Player I to Player II if actions a ∈ A(x) and
b ∈ B(x, a) are chosen a state x ∈ X; c is a Borel function on Gr(B);

q(X|x, a, b) be the Borel-measurable transition probability representing that the
next state is in X ∈ B(X), given that the actions a ∈ A(x) and b ∈ B(x, a) are
chosen at the state x ∈ X.
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Expected Total Discounted Payoff

For a discount factor α ∈ [0, 1), strategies πA and πB of Players I and II
respectively, and an initial state x ∈ X, let

vπ
A,πB,⊕

α (x) := Eπ
A,πB
x

∞∑
t=0

αtc+(xt, at, bt),

vπ
A,πB,	

α (x) := Eπ
A,πB
x

∞∑
t=0

αtc−(xt, at, bt),

where z+ := max{z, 0} and z− := min{z, 0} for each z ∈ R.

The expected total discounted payoff of Player I to Player II over the
infinite horizon is

vπ
A,πB

α (x) := Eπ
A,πB
x

∞∑
t=0

αtc(xt, at, bt) = vπ
A,πB,⊕

α (x) + vπ
A,πB,	

α (x) (10)

Additional conditions ensure that at least one of the summands in (10) is
finite for each pair of policies πA and πB.
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Definition of Optimal Strategies for Player I

Let
v]α(x) := inf

πA∈ΠA
sup
πB∈ΠB

vπ
A,πB

α (x),

where ΠA and ΠB are the set of all strategies for players I and II
respectively. This is the minimax of the game starting at the state x ∈ X.

A strategy πA∗ ∈ ΠA is called optimal for player I if

sup
πB∈ΠB

vπ
A
∗ ,π

B
α (x) = v]α(x)

for all x ∈ X.
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Weak Continuity of Transition Probabilities

The transition probability q(·|x, a, b) is assumed to be weakly continuous
in (x, a, b) ∈ Gr(B) :

if (x(n), a(n), b(n))→ (x, a, b), then q(·|x(n), a(n), b(n))
weakly−−−−→ q(·|x, a, b),

that is,

lim
n→∞

∫
X
f(y)q(dy|x(n), a(n), b(n)) =

∫
X
f(y)q(dy|x, a, b),

if (x, a, b) = limn→∞(x(n), a(n), b(n)), for all bounded and continuous
functions f : Gr(B) 7→ R.
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Preliminaries

Recall that:

The set-valued mapping BA↔B : X× B 7→ 2A \ {∅} is uniquely
defined by

Gr(BA↔B) := {(x, b, a) ∈ X× B× A : (x, a, b) ∈ Gr(B),

that is
BA↔B(x, b) = {a ∈ A(x) : b ∈ B(x, a)}.

The function cA↔B : Gr(BA↔B) ⊂ (X× B)× A 7→ R is defined as

cA↔B(x, b, a) := c(x, a, b), (x, a, b) ∈ Gr(B).
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Sufficient Conditions for the Existence of Optimal
Strategies for Player I

Jaśkiewicz and Nowak (2011) F., Kasyanov, Zgurovsky (2018)

(i) A(x) is compact for each x ∈ X
and set-valued mapping x 7→ A(x) is
upper semi-continuous.

(i)+(ii)
====⇒ cA↔B is K-inf-compact.

(ii) c is lower semi-continuous. The set-valued mapping

(iii) Set-valued mapping (x, a) →
B(x, a) is lower semi-continuous.

(i)+(iii)
=====⇒ (x, a)→ B(x, a) is A-lower semi-

continuous.

There exists a continuous function ω : X 7→ [1,∞)
and a constant β > 0 such that αβ < 1,∫

X
ω(y)q(dy|x, a, b) ≤ βω(x) for each (x, a, b) ∈ Gr(B),

the function (x, a, b) 7→
∫
X ω(y)q(dy|x, a, b) is continuous, and

−ω(x) ≤ inf
a∈A(x)

inf
b∈B(x,a)

c(x, a, b) for each x ∈ X.
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