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The Monotone Sharpe ratio

Portfolio selection

Let X be the benchmark-adjusted future return of some stock portfolio.

The Sharpe ratio (W. F. Sharpe, 1966):

EFX
S(X)=——.
M=o
Markowitz portfolio selection: let R;, i = 0,...,n, be asset returns;

for given 6 > 0 find 2 € R™*! which

minimizes o(z - R) subjectto > z; =1, E(x-R) > 6.
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Efficient frontier
Assume Ry = 0 (a risk-free asset). Then the solution in the (o, F)
coordinates:

E

The slope of the efficient frontier is the maximal Sharpe ratio S*:

S* = max S(z - R).

T
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The solution is not monotone

It may be possible to obtain a higher Sharpe ratio by disposing of a part
of the return:
S(Y) > S(X) for some Y < X.
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Monotone Sharpe ratio

Define the monotone Sharpe ratio

where sup is over random variables Y such that P(Y < X)) = 1.

The following formula can be proved for X € L? (Z., 2015):
! inf £(1 — cX)?
1+ (S(X))2 <0 +

where inf is over real numbers ¢ > 0 and (...);+ = max(0, ...).
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Connection between MSR and bPOE

Conditional value at risk (CVaR)
Let Q(X, A) denote the quantile function of a random variable X:
Q(X,\) = z such that P(X < z) = A, A e [0,1],

and Q(X, \) denote the superquantile function (CVaR) for X € L'

Q(X,A) = E(X [ X > Q(X, ).

The well-known representation (Rockafellar, Uryasev, 2000):

O(X,)) = ig}fk(ﬁE(X —o)y + c).

5/22



CVaR in LP
In a similar way, define for X € L?, p € [1,00) (Krokhmal, 2007):

(X, N) = inf (51X = o), +c).

Define the inverse of @p(X, A) in A (buffered probability that X > x):

1 —Qljl(X,:U), if > EX,

P,(X,x) =
b &) {1, ifr < EX

(for simplicity, it is assumed here that X is unbounded from above).

For L', bPOE was studied in Rockafellar, Royset (2010), Mafusalov,
Uryasev (2014).
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Quantile and superquantile POE and bPOE

x

It can be proved similarly to Mafusalov, Norton, Uryasev (2014):

Pp(X,z) = inf [|(c(X —2) + 1)+ |-

c=0
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MSR and bPOE

For X € L?:
Py(—X,0) = (1+ (S(X))*) 2.
For X e L% B B
Pi(—X,0) = (14 51(X)),
where

nf L£Y
= 1n .
v<X E|Y —med(Y)|

S1(X)

There is no simple formula for p # 1,2 but a dual representation can be
proved for MSR in L, p € [1,0).
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If E(X) > 0, the following representation is true for p > 1:

(Sy(X))7 = ﬁzﬁ{b - E(g;,}\(ax +b)s — g’ + (aX + b)+) }
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A dynamic maximization problem for the Sharpe ratio

A market model

One riskless asset with price B; = e, where r > 0.
P

One risky asset, a geometric Brownian motion:

dSt == St(udt + O'th), S() = 1.

A trading strategy: (v, u;), the amount of money invested in the
riskless and risky assets.

The capital X;"" = v;+ u; of a strategy (v, ut) satisfies the equation

dB,  dS,
pu =2t XM =10 > 0.

dXZ%U = 'UtFt St s

Equivalently: dX;"" = (rv + puy)dt + oudWy.
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— The model can be reduced to B; = 1, then
dXZL = pugdt + ougdWy, Xg = xq.

— The class of admissible control processes:

T
U—{ut:E/ urdt} < oo.
0

The dynamic Sharpe ratio maximization problem on [0, T7:

EXY — 10

over u € U.
o(X7)

maximize S(X7) =
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Literature review
The problem can be reduced to the constraint optimization problem

minimize: E(X%*)?

subject to:  E X7} =.

1. Richardson (1989) solved this problem by martingale methods:

First, find the optimal terminal capital X7 in the set {X¥ | u € U} of
capitals of all admissible strategies.

Then, find the process X/, t € [0, 7.

Finally, find the optimal w;.
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2. Pedersen, Peskir (2013) solved the problem by solving the Hamilton—
Jacobi-Bellman equation for the Lagrangian:

minimize B(X%)? — AEXY. (%)
The HJB equation:
: g2 2
112]%{ {Vt' + puVy + Gu V;n/;} =0.
V(T,z) = 2% — \r,

where V (¢, x) is the minimal value of (%) under condition X; = x.

The key idea is to look for the solution in the form

V(t,z) = a(t)z? + b(t)x + c(t).
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A simple (and more general) solution using bPOE and MSR

We'll first solve the bPOE minimization problem for p > 1:

V= mlnP( X7,0).

ueU

From the representation of P,(X,z):

V = minmin ||(1 - eX7)+[lp = min [|(1 — X7)+[lp,
c20 ueld

where we use that ¢ can be included in the control by changing u; = cu;.
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Then N
VP = min E|X[P
ueU

for
AX" = —pupdt — oudWy,  X¢ = 1.

We can remove (-); since it's never optimal to go below zero.
Let wy = —ut/)?g‘. Then

E|IX}P = E{ZT exp(foT(upws +10%(p° —p)wi)dS) }

where Z; > 0 is a martingale (cstochastic exponent of opw; w.r.t. W;)
and we can show that EZp = 1.

15/22



By changing the measure to dQQ = ZpdP we obtain
v T
AEM#V::EQ{@®<L)was+%0%p2—pﬁﬁﬁh)}

which is minimized by minimizing the integrand for each ¢:

N .
oi(p—1)

w

Then the optimal control in the original problem

L
_ 1 S(?L .
b a?(p — 1)( )

Since any control ; = C'u; will be optimal as well, the family of optimal
control functions is

u(t,:p):L(C—x), C>0.
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S-optimality is the same as S-optimality

The previous result provides the solution to the problem:

overu € U.

maximize S(X%) = sup

We show that the same strategy also maximizes S(X7).
Suppose for optimal u* there is Y < X% such that S(Y) > S(X4).

Since the BS-market is complete, there is y < 0 and a control u; so that
Xy =y <0and X3 =Y.

Then the capital process X; = yo + X;* has a higher Sharpe ratio than
Y and a higher monotone Sharpe ratio than X** — a contradiction.
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A mean-variance optimal selling problem

As before, one risky asset:

dS; = St(udt + O’th), So = 1.

Consider the problem:

maximize — ——— over stopping times 7.

o(S;)
The interesting case is only when u € (0, %2)
— 1 < 0: the optimal 7 =0,
- p= %2: the process S; = exp(o B + (1 — %Q)t) reaches any level A4;
take 7 = 74 and A — +o0.
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A result of Pedersen and Peskir (2012)

Pedersen and Peskir considered an equivalent problem
maximize E S, — cVar .S;.

Their solution briefly:

1. Equivalence to a constrained problem: min{ES? | ES, = 6}.
T

2. Lagrange multipliers: min{ES? — AES, }.

3. Markov formulation: the value function V (s) = min E(S% — \S;),
T
where Es(-) = E(-| Sy = s).
4. Apply methods for Markov optimal stopping problems.
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A simple solution using the monotone Sharpe ratio

First, let's maximize the monotone Sharpe ratio, or, equivalently

minimize Py(—(S; — ),0) over Markov times 7.

From the representation of P(X,0):

V = minmin E(1 — ¢(S, — z))%.

cz0 T

The inner problem min, E(...) is Markovian, and by a simple argument
it can be shown that the solution is

Te = 1nf{t 2 0 . St 2 bc})

where 7. = oo if S; < b, for all ¢.
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Hence, for the optimal 7* the distribution of S« is binomial:

5. — {b*, if 7% < oo,

0, if 7 =o0.

Next observe that if 7* maximizes S(.S;), then

_ EY —x ES»—=z
S ST* = Su e
(52)= 3 &)~ o(5)

i.e. Y = S.«, which follows from that only .Z57*-measurable Y can be

considered.

Hence, the same 7% maximizes both S and S.
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To find the optimal level b, use the well-known result that:

P(m, < 00) = b7 where v = 24 < 1.

o2

Then
ES,, —x bpy — B b’ —=x

o(Sn) byl —m) b (1—b-1)3

From here, b > 1 which maximizes the right-hand side can be found

numerically.
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Thank you for your attention



