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Introduction

Network-based analysis of big data

Big data arising in various complex systems can be conveniently modeled
using networks/graphs:

components of the complex system – vertices

pairwise interactions between different components – edges

Network-based analysis allows to capture some global structural properties
of the system and predict overall trends in its dynamics.
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Introduction

Clusters in networks

In many applications one is interested in detecting/designing cohesive
clusters

Communication/sensor networks

Transportation/supply networks

Power grid

Cybersecurity

Biological networks

Social networks

Financial networks
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Introduction

Networks of materials

 

http://www.aflowlib.org/material.php?id=104466 

http://www.aflowlib.org/material.php?id=108022 

A. Veremyev, L. Liyanage, V. Boginski, M. Fornari, M. Buongiorno Nardelli, S. Curtarolo, and S. Butenko. Networks of

materials. Working paper.
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Introduction

Social networks

A social network is described by G = (V,E) where V is the set of “actors”
and E is the set of “ties”.

actors are people and a tie exists if two people know each other.

actors are wire transfer database records and a tie exists if two
records have the same matching field.

Cohesive subgroups are “closely knit groups” in a social network.

Social cohesion is often used to explain and develop sociological
theories.
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Introduction

Cliques

Etymology: The term clique originates from Old French cliquer
meaning make a noise

WordNet dictionary definition: an exclusive circle of people with a
common purpose

Luce and Perry (1949): social clique – a group of people that know
(are friends of) all other people in the group

24/38

Some Drawbacks of k-Cliques and k-Clubs

3. k-cliques and k-clubs do not have meaningful complementary
definitions.
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Cycle on 5 vertices Also a cycle on 5 vertices !

Sergiy Butenko (Texas A&M University) Clustering in Random Networks October 2, 2018, 8 / 50



9/50

Introduction

Cliques and independent sets

1

5 2

4 3

1

5 2

4 3

Complement

{1,2,5} : maximal clique {1,2,5} : maximal 
independent set

{1,4} : maximal 
independent set {1,4} : maximal clique

{2,3,4,5} : maximum clique {2,3,4,5} : maximum 
independent set

GG
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Introduction

Clustering in networks

Partitioning vertices into ‘natural groups’ (clusters)
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Introduction

Clustering in networks
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Introduction

Clustering in networks

Alternative approaches to unsupervised clustering:

Require each cluster to satisfy certain structural properties and
minimize the number of clusters

Minimum clique partitioning

Optimize a certain quantitative measure of clustering quality

Modularity: the fraction of edges that fall within clusters,
minus the expected fraction of edges within clusters for a
random graph with same degree distribution as the given
network.
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Clique relaxations

Alternatives to clique

G = (V,E). S ⊆ V is

s-clique if dG(v, v′) ≤ s, for any v, v′ ∈ S (Luce 1950)

s-club if diam(G[S]) ≤ s (Alba 1973, Mokken 1979)

s-plex if δ(G[S]) ≥ |S| − s (Seidman & Foster 1978)

s-defective clique if G[S] has at least
(|S|

2

)
− s edges (Yu et al.

2006)

k-core if δ(G[S]) ≥ k (Seidman 1983)

k-block if κ(G[S]) ≥ k (Moody & White 2003)

γ-quasi-clique if ρ(G[S]) ≥ γ (Abello et al. 2002)

(λ, γ)-quasi-clique if δ(G[S]) ≥ λ(|S| − 1) and ρ(G[S]) ≥ γ
(Brunato et al. 2008)

...
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Clique relaxations

Elementary clique-defining properties

Proposition

A subset of vertices C is a clique in G if and only if one of the following
conditions hold:

a) Pairwise distances: dG(v, v′) = 1, for any v, v′ ∈ C;

b) Diameter: diam(G[C]) = 1;

c) Domination: D = {v} is a dominating set in G[C], for any v ∈ C;

d) Minimum degree: δ(G[C]) = |C| − 1;

e) Edge density: ρ(G[C]) = 1;

f) Vertex connectivity: κ(G[C]) = |C| − 1.
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Clique relaxations

Clique relaxations taxonomy

Clique Relaxations 

Restricting clique 

property  violation  

Ensuring a fixed-size 

clique property 

Standard/Weak Absolute/Relative Structural/Statistical 

“The whole is more than the sum of its parts.”
–Aristotle (384-322 BC)

J. Pattillo, N. Youssef, and S. Butenko. On clique relaxation models in network
analysis. European Jour. of Oper. Res., 226: 9–18, 2013.
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Clique relaxations

Clique relaxations

B. Balasundaram, S. Butenko, and I. Hicks. Clique relaxations in social network analysis: the maximum k-plex problem.

Operations Research, 2011.

S. Trukhanov, C. Balasubramaniam, B. Balasundaram, and S. Butenko. Algorithms for detecting optimal hereditary

structures in graphs, with application to clique relaxations. Computational Optimization and Applications, 2013.

J. Pattillo, A. Veremyev, S. Butenko, V. Boginski. On the maximum quasi-clique problem. Discrete Applied Math, 2013

V. Boginski, S. Butenko, O. Shirokikh, S. Trukhanov, and J. Gil-Lafuente. A network-based data mining approach to

portfolio selection via weighted clique relaxations. Annals of Operations Research, 2014.

A. Buchanan, J. S. Sung, V. Boginski, S. Butenko. On connected dominating sets of restricted diameter. European Jour.

of Oper. Res., 236: 410–418, 2014.

J. Pattillo, Y. Wang, and S. Butenko. Approximating 2-cliques in unit disk graphs. Discrete Applied Math, 2014.

S. Shahinpour and S. Butenko.Algorithms for the maximum k-club problem in graphs.J. of Combinatorial Optim, 2013.

A. Veremyev, O. A. Prokopyev, S. Butenko, and E. L. Pasiliao. Exact MIP-based approaches for finding maximum

quasi-cliques and dense subgraphs. Computational Optimization and Applications, 2017.

C. Balasubramaniam and S. Butenko. On robust clusters of minimum cardinality in networks. Annals of Operations

Research, 2017.

O. Yezerska, S. Butenko, and V. L. Boginski. Detecting robust cliques in graphs subject to uncertain edge failures.

Annals of Operations Research, 2018.

O. Yezerska, F. Mahdavi Pajouh, A. Veremyev, and S. Butenko. Exact algorithms for the minimum s-club partitioning

problem. Annals of Operations Research, 2018.
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Clique relaxations

Clique relaxations: s-defective clique

Definition

A subset of vertices S is an s-defective clique if the number of edges in
the induced subgraph is at least

(|S|
2

)
− s.

i.e., at most s edges are missing.

1 12 2

3 3

4 45 5

6 6

3-defective clique co-3-defective clique
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Clique relaxations

Independent union of cliques

Definition (Independent union of cliques (IUC))

A subset of vertices C is called an independent union of cliques (IUC) if
every connected component of G[C] is a complete graph.

Z. Ertem, A. Veremyev, and S. Butenko. Detecting large cohesive subgroups
with high clustering coefficients in social networks. Social Networks 46:
1–10, 2016.
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Clique relaxations

Independent union of cliques

Definition

An open triangle is a simple graph with three vertices and two edges (i.e.,
a 3-vertex path), and a closed triangle is a complete 3-vertex graph.

Proposition

C ⊆ V is an IUC if and only if no set of three vertices from C induces an
open triangle in G.
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Clique relaxations

Independent union of cliques

α(G) = max
x∈[0,1]n

∑
i∈V (G)

xi
1 +

∑
j∈N(i)

xj

If x∗ is a global maximizer and x∗ ≡ I∗, then I∗ induces an IUC.

B. Balasundaram and S. Butenko. On a polynomial fractional
formulation for independence number of a graph. Journal of Global
Optimization, 2006.
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Clique relaxations

Cluster editing

Cluster editing

Remove or add minimum number of edges to obtain an IUC.

Cluster vertex deletion

Remove minimum number of vertices to obtain an IUC.
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Clique relaxations

Independent union of cliques and cluster vertex deletion

Maximum IUC is equivalent to the optimization version of cluster
vertex deletion problem (Hüffner et al., 2010) (or the s-plex cluster
vertex deletion problem with s = 1 (Bevern et al., 2012)

� Find a minimum number of vertices that need to be removed from the
graph so that the remaining vertices form an IUC.

� D is an optimal solution of the cluster deletion problem if and only if
C = V \D is a maximum IUC.
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Clique relaxations

Independent union of cliques and cluster vertex deletion

Sergiy Butenko (Texas A&M University) Clustering in Random Networks October 2, 2018, 24 / 50



25/50

Clique relaxations

Independent union of cliques and cluster vertex deletion

Sergiy Butenko (Texas A&M University) Clustering in Random Networks October 2, 2018, 25 / 50



26/50

Clique relaxations

Independent union of cliques and cluster vertex deletion

An IUC is a subset of cluster graph that every connected
component of the induced subgraph is complete.
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Clique relaxations

Heredity in induced subgraphs

A graph property Π said to be nontrivial, if every graph with one vertex
satisfies Π, and not every graph satisfies Π. A graph property Π said to be
interesting, if there are graphs with arbitrary large number of vertices
satisfying Π.

A graph property Π said to be hereditary on induced subgraphs, if for
every S ⊆ V such that G[S] satisfies Π, the property Π is also satisfied by
G[S′] for any nonempty S′ ⊆ S.

Theorem (Yannakakis, 1978)

The maximum Π problem for a property Π that is nontrivial, interesting
and hereditary on induced subgraphs is NP-hard.
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Clique relaxations

Heredity in induced subgraphs

Clique

Independent (stable) set

Forest

Bipartite graph

Perfect graph

s-defective clique

s-plex

s-bundle

Independent union of cliques
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Clique relaxations

Independent unions

Definition

Independent union of Π-sets (IU(Π)) – a subset of vertices inducing a
subgraph where every connected component satisfies Π.

Π = “clique”: independent union of cliques (IUC).

Π = “s-defective clique”: independent union of s-defective cliques
(IUsDC).

Obvervations

if Π is hereditary, then IU(Π) is hereditary

if Π is nontrivial, then independent set satisfies IU(Π)
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Asymptotic bounds in random networks
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Asymptotic bounds in random networks

Uniform random graphs

Uniform random graph model
(Erdős and Rényi): Given a set
of n vertices V , each edge exists
with probability 0 ≤ p ≤ 1.

Denoted G(n, p).

Testing scalability of algorithms.

Is the problem easy “on
average”?

Can we bound the solution
value (with high probability)?
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Asymptotic bounds in random networks

Defining functions

Definition

A defining function ζ(Π;n, p) for property Π is the probability of a random
graph G(n, p) satisfying Π.

Π ζ(Π;n, p)

Clique p(
n
2)

Stable set (1− p)(
n
2)

s-defective clique p(
n
2) + · · ·+

((n
2

)
s

)
p(

n
2)−s(1− p)s

γ-quasi clique p(
n
2) + · · ·+

( (
n
2

)⌈
γ
(
n
2

)⌉)pdγ(n2)e(1− p)(n2)−dγ(n2)e

Sergiy Butenko (Texas A&M University) Clustering in Random Networks October 2, 2018, 32 / 50
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Asymptotic bounds in random networks

Defining functions

Basic properties

if Π is nontrivial, then ζ(Π; 1, p) = 1

if Π is hereditary, then ζ(Π;n, p) ≤ ζ(Π;n− 1, p)

ζ(Π;n, p) ≤ ζ(IU(Π);n, p)

Sergiy Butenko (Texas A&M University) Clustering in Random Networks October 2, 2018, 33 / 50
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Asymptotic bounds in random networks

Classical approach

Question

What is the cardinality of a maximum Π-set in G(n, p) with high
probability?

Consider a random variable

Xk = number of Π-sets of cardinality k in G(n, p).

Then

P (Xk ≥ 1) ≤ E[Xk] =

(
n

k

)
ζ(Π; k, p)

We are interested in the largest k, such that E[Xk] ≥ 1.

If E[Xf(n)]→ 0, G(n, p) does not contain a Π-set of cardinality f(n)
w.h.p.
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Asymptotic bounds in random networks

Lower bound

Lemma

For a nontrivial property Π, the cardinality of the maximum IU(Π)-set in
G(n, p) is at least (1 + ε) log 1

1−p
(n) w.h.p.

Lemma

For a nontrivial property Π, if clique satisfies Π, then the cardinality of the
maximum IU(Π)-set in G(n, p) is at least (1 + ε) log 1

p
(n) w.h.p.
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Asymptotic bounds in random networks

Defining function of independent unions

Theorem (IU defining function recurrence)

Let a nontrivial, interesting property Π have a defining function ζ(Π;n, p). Then

ζ(IU(Π);n, p) =
n∑

k=1

(
n− 1

k − 1

)
ζ(Π; k, p)(1 − p)k(n−k)ζ(IU(Π);n− k, p),

where ζ(IU(Π); 0, p) = ζ(IU(Π); 1, p) = 1.

Π IU(Π)

k

k(n− k)

n− k
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Asymptotic bounds in random networks

IUC defining function

Recall, for Π=“clique”, ζ(Π;n, p) = p(
n
2). For Π=“IUC”, we have:

n ζ(Π;n, p)

0-2 1
3 1− 3p2(1− p)
4 1− 12p2 + 32p3 − 39p4 + 24p5 − 5p6

5 12p10 − 50p9 + 75p8 + 10p7 − 195p6+
+318p5 − 270p4 + 130p3 − 30p2 + 1

6 1− 60p2 + 360p3 − 945p4 + 792p5 + 2775p6 − 12090p7

+25035p8 − 34240p9 + 33204p10 − 23130p11 + 11385p12−
−3780p13 + 765p14 − 71p15
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Asymptotic bounds in random networks

IUC defining function
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Asymptotic bounds in random networks

Conditions for logarithmic upper bounds

Theorem

If ζ(Π;n+1,p)
ζ(Π;n,p) = O(npn) for fixed p ≥ 0.5, then max |IU(Π)| ≤ 2

⌈
log 1

p
(n)
⌉

+ 1

with high probability.

Theorem

If ζ(Π;n+1,p)
ζ(Π;n,p) = O(n(1− p)n) for fixed p ≤ 0.5 then

max |IU(Π)| ≤ 2
⌈
log 1

1−p
(n)
⌉

+ 1 with high probability.

Lemma

The results of the previous theorems hold even when ζ(Π, n, p) is replaced with

some ζ̂(Π, n, p) ≥ ζ(Π, n, p).
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Asymptotic bounds in random networks

IUC in G(n, p): p > 0.5

Theorem

Let αω(G) be the cardinality of a maximum IUC in G. Then for p > 0.5,
we have

αω(G(n, p)) ∼ ω(G(n, p)).

This implies that
αω(G(n, p)) ≤ 2 log 1

p
(n)

with high probability.
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Asymptotic bounds in random networks

IUC in G(n, p): p < 0.5

Theorem

Let αω(G) be the cardinality of a maximum IUC in G. Then for p > 0.5,
we have

αω(G(n, p)) ∼ α(G(n, p)).

This implies that
αω(G(n, p)) ≤ 2 log 1

1−p
(n)

with high probability.
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Asymptotic bounds in random networks

IUC in G(n, p) : p = 0.5

Recall that ζ(clique;n, p) = p(
n
2).

If p = 0.5, then ζ(clique;n, 0.5) = 2−(n
2).

Theorem

Let Bn be the n-th Bell number (the number of partitions of a set of size
n). Then

ζ(IUC;n, p) = 2−(n2) ·Bn.

Moreover,
αω(G(n, 0.5)) ≤ 2 log2(n)

with high probability.
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Asymptotic bounds in random networks

IUC in G(n, p) : p = 0.5

Proof:

According to the IU defining function recurrence,

ζ(IUC;n, 0.5) = 2−(n
2)
n−1∑
t=0

(
n− 1

t

)
2(t

2)ζ(IUC; t, 0.5).

Define Bn = 2(n
2)ζ(IUC;n, 0.5). Then Bn satisfies the recursive relation

Bn =

n−1∑
t=0

(
n− 1

t

)
Bt with B0 = 1.

This relation is precisely the relation for the n-th Bell number.
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Asymptotic bounds in random networks

IUC in G(n, p) : p = 0.5

Let Xk = number of IUC of cardinality k, then

P (Xk ≥ 1) ≤ E[Xk] =

(
n

k

)
2−(k2) ·Bk.

According to Berend and Tassa (2010),

Bk ≤
(

0.792k

ln(k + 1)

)k
.

Thus,

E(Xk) =

(
n

k

)
2−(k2)Bk ≤

(
n

k

)
2−(k2)

(
0.792k

ln(k + 1)

)k
.
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Asymptotic bounds in random networks

IUC in G(n, p) : p = 0.5
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Maximum k for which the theoretical bound on E(Xk) is at least 1.
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Asymptotic bounds in random networks

IUC in G(n, p) : p = 0.5
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Asymptotic bounds in random networks

s-Defective clique

The defining function is

ζ(n) = p(
n
2) +

s∑
i=1

((n
2

)
i

)
p(

n
2)−i(1− p)i

We have

ζ(Π;n, p) ≤ ζ̂(Π;n, p) =

((n
2

)
s

)
p(

n
2)−s

and
ζ̂(n+ 1)

ζ̂(n)
≤ 2snpn.

So, the logarithmic bound holds.
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Conclusion

Conclusions

Criteria when independent unions have a logarithmic upper bound.

Logarithmic upper and lower bound for the maximum IUC size in a
uniform random graph.

Future work:

Power-law graphs.

Apply results to other independent unions, e.g., γ-quasi cliques and
other clique relaxations.
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Conclusion
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