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Outline

Decision making under catastrophic risk.

How to model catastrophic risk?

Is safety-first principle rational?

Robust decision making under catastrophic risk.

Estimation the catastrophe probability

Generalized Chebyshev’s inequalities and catastrophic risk
estimation.
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Catastrophic risk: estimation and decision making

Model:

Uncertain outcome - (finite valued) random variable X.

Catastrophe: X ≤ C for some C ∈ R

Aims:

Catastrophic risk estimation: find P[X ≤ C].

Decision making: Preference relation � on space of r.v.s

� is consistent with safety-first principle if

P[X ≤ C] < P[Y ≤ C] ⇒ X � Y
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Safety-first principle: standard paradoxes

� is:

Continuous if sets {Y : Y � X} and {Y : X � Y} - closed ∀Y
Risk averse if X � Y , whenever Y ∼ X + Z with
E[Z|X = x] = 0, ∀x.

- (Equivalently, X � Y , whenever E[X] = E[Y] and X �SSD Y)

Paradoxes. Safety-first principle (X � Y ⇔ P[X ≤ C] ≤ P[Y ≤ C]):

is not continuous;

is not risk-averse.

Reason: It may be X < C. Wrong model?
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Alternative model

Random variable X takes values in R ∪ {−∞}.
Catastrophe: X = −∞.

Safety-first principle:

P[X = −∞] < P[Y = −∞] ⇒ X � Y

Theorem
(a) � can be continuous, risk-averse, and consistent with the

safety-first principle.

(b) Every risk-averse strictly monotone � is consistent with the
safety-first principle.
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Is risk aversion “rational”?

Example

Person with capital 109.
Risk of imprisonment and confiscation 20%
A lawyer promises to reduce it to 19% for premium 107.
Should a person agree?

Safety-first⇒ Yes.

Risk aversion⇒ Yes.

Common sense⇒ No.

Reason: 20% and 19% are practically indistinguishable!
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Robust preference relation

20% ≈ 19%, but 1% 6= 0%.

Probabilities should be compared in relative sense!

ρ(P,Q) := sup
A∈M

|Q(A)− P(A)|
P(A)

ρ(P,Q) ≤ ε⇒ 1− ε ≤ Q(A)/P(A) ≤ 1 + ε for any event A.

For any X, let

X̃(ε) be an r.v. with the CDF
FX̃(ε)(x) = P

[
X̃(ε) ≤ x

]
= Q[X ≤ x], where ρ(P,Q) ≤ ε;

∆ε be an r.v. (error) such that sup |∆ε| ≤ ε.

� is robust if X � Y implies X̃(ε) + ∆ε � Ỹ(ε) for some ε > 0.
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Sensitivity to catastrophic events

Definition
(Chichilnisky (2002)) � is insensitive to catastrophic events, if X � Y
implies that there exists ε > 0 such that X(ε) � Y(ε), where X(ε) and
Y(ε) are any r.v.’s such that P

[
X = X(ε)

]
≥ 1− ε and

P
[
Y = Y(ε)

]
≥ 1− ε.

A “good” � should be

Continuous

Robust

But not insensitive to catastrophic events!
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Ordinal utility theory

Expected utility theory:

X � Y ⇔ 0 ≤ E[u(X)]− E[u(Y)] =

∫ 1

0

(∫ qX(t)

qY(t)
v(x)dx

)
dt

where v(x) = u′(x).

Generalization (ordinal utility theory):

X � Y ⇔ 0 ≤
∫ 1

0

(∫ qX(t)

qY(t)
v(x, t)dx

)
dt
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Analysis

(a) v(x, t) ≡ 1 - safety-first principle.
(b) v(x, t) is independent of t - expected utility.
(c) v(x, t) is independent of x - Yaari’s dual utility theory.
(d) v(x, t) = u(x)p(t) - generalizes Prospect theory.

Let ϕ(t) =
∫ 0
−∞ v(x, t) dx.

Theorem

(i) � is robust⇔
∫ 1−ε
ε ϕ(t) dt < +∞, ∀ε > 0.

(ii) � is sensitive to catastrophic events⇔∫ ε
0 ϕ(t) dt = +∞, ∀ε > 0.

Example

v(x, t) = (1 + |x|)t2−t−1 is strictly monotone, robust, and sensitive to
catastrophic events.
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Summary of Part I: decision making

Modelling catastrophe as X ≤ C, C ∈ R may not be appropriate.

We suggest to model it as X = −∞
In this setting, every monotone risk averse � is “safety-first” one.

However, one may replace risk aversion by robustness

We derive family of � which are:

continuous;
monotone;
robust;
sensitive to catastrophic events.
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How to estimate the probability of catastrophe

Back to standard setting:

X - some random variable.
Catastrophe occurs if X ≤ C for some C.

Problem:

How to estimate P[X ≤ C]?
Given i.i.d. sample x1, x2, . . . , xn it may be that all xi > C.
However, we can estimate E[X] and (for example) σ(X).
Option 1: Assume particular distribution (normal?) and find
P[X ≤ C].
Option 2: No assumptions, and use (one sided) Chebyshev’s
inequality:

P[X ≤ EX − a] ≤ σ2(X)

σ2(X) + a2

Options 1 and Options 2 are two extremes.
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Chebyshev’s inequalities for families of distributions

Options 1 and Options 2 are two extremes.
Let us assume that X belongs to some family F.
Can we then improve Chebyshev’s inequality? Yes!
Examples:

If X has log-concave cdf then:

P[X ≤ EX − a] ≤ β,
√

1 + 2β logβ − β2

β − logβ − 1
=
σ(X)

a
.

For unimodal class (mode=mean)

P[X ≤ EX − a] ≤ β, 3a
2

√
β

(1− β)3 = σ(X).

Our methodology works for essentially any “natural” family F!
And for any “deviation measure” in place of σ!
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Chebyshev’s inequalities for families of distributions

Dependence of P[X ≤ C] from σ(X)
EX−C

1.
1Figure from paper: Faridafshin, F., Grechuk, B., Naess, A., Calculating

Exceedance Probabilities Using a Distributionally Robust Method. Structural Safety,
67, 2017, pp 132-141
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Summary

Decision making under catastrophic risk.

We suggest to model it as X = −∞
Formulate desirable properties of preference relation �
Derive family of � satisfying these properties.

Estimation the catastrophe probability

Make assumptions about underlying distribution (assume that
X ∈ F)

Develop methodology to derive Chebyshev’s inequalities for any
family F

Illustrate for log-concave and unimodal families.
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