Engineering Design and Decision Making

Johannes O. Royset
Professor of Operations Research
Naval Postgraduate School, Monterey, CA

Supported by DARPA and AFOSR

University of Florida, Oct 1, 2018

1/27



Unpleasant surprises

$2B San Francisco transit center closed due to cracks

Sep 25, 2018 al 7:30:29 PM

Photo: KQED and NBC
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Emerging challenges

Automation in design, manufacturing, construction
Custom design, unique settings, novel material, evolving demand
Uncertain loads; climate adaptation

Pressure on cost and resource usage

optimization under uncertainty
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Emerging challenges

Automation in design, manufacturing, construction
Custom design, unique settings, novel material, evolving demand
Uncertain loads; climate adaptation

Pressure on cost and resource usage

optimization under uncertainty

Need to leverage:
» computing power and data storage
P sensing capability
» data analytics

» predictive models of social, physical, and cyber systems
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Case study: design of high-speed vessel

novel concept and material with complicated physics
multi-disciplinary
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Role of probability and statistics

Early approaches: tradition, testing, safety factors

Emerging uncertainty quantification:
Benjamin & Cornell '70; Ang & Tang '75
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Role of probability and statistics

Early approaches: tradition, testing, safety factors

Emerging uncertainty quantification:
Benjamin & Cornell '70; Ang & Tang '75

Random variable Y modeling system response
(e.g., Y = load — strength)

Cornell '69: reliability index —u(Y)/o(Y)

Hasofer & Lind '74: for Y :~aTV + b, with normal vector V
standardize: Y =3"U+ b N
HL-reliability index: distance from origin to 3'u+b =0
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A nonnormal world . ..
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Uncertain tip displacement of hydrofoil under random cavitation

index and material properties
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Failure probability

Rackwitz & Fiessler '78: for Y = g(U), possibly nonlinear
linearization of g at nearest point to origin (FORM)
probability of failure: Prob(Y > 0) ~ ¢(—pf)
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Failure probability

Rackwitz & Fiessler '78: for Y = g(U), possibly nonlinear
linearization of g at nearest point to origin (FORM)
probability of failure: Prob(Y > 0) ~ ¢(—pf)

Would like to optimize the design:

P g also depends on design variables x
» FORM: bilevel optimization (lack of constraint qualification)

» Direct optimization of Prob(g(x, V) > 0) difficult
(nonconvex, noncontinuous)

Uryasev '95; Royset & Polak '07; Van Ackooij & Henrion '14
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More comprehensive: probability distribution

Performance-based engineering '90s: estimate the distribution
Hazard, structural, damage, loss analysis (Gunay & Mosalam '13)
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50-year loss from earthquakes in Vancouver area (billon CAD)
Mahsuli & Haukaas, 2013
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How to compare probability distributions?

Design 1: uncertain response /3

Design 2: uncertain response Z;

1
pdf of Z, [~ pdfof Z,
RN
—1.M 0.33
LE] "1 -

Which design is less uncertain, safer?

Concern about upper tail (displacement, stress, cost)
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Details

1
pdf of Z, T pdf of Z,

—1.M 0.33
1

-1 1
same mean (—0.33) and std. dev. (0.87)
Prob(Z; > 0) = 0.25 (better) and Prob(Z> > 0) = 0.31

Failure probability doesn't account for magnitude of exceedance
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Superquantile risk

Risk assessment in finance: Rockafeller & Uryasev '00, '02 (CVaR);
Acerbi & Tasche '02 (exp. shortfall); Follmer & Schied '04 (AVaR)
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Risk assessment in finance: Rockafeller & Uryasev '00, '02 (CVaR);
Acerbi & Tasche '02 (exp. shortfall); Follmer & Schied '04 (AVaR)

For a € [0, 1], the a-superquantile of random variable Z:
R.(Z) = average of (1 — a)100% worst outcomes of Z

pdf of Z\ 1
ol
1—a
1
-1 Ra(Z)./ 1
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Superquantile risk

Risk assessment in finance: Rockafeller & Uryasev '00, '02 (CVaR);
Acerbi & Tasche '02 (exp. shortfall); Follmer & Schied '04 (AVaR)

For a € [0, 1], the a-superquantile of random variable Z:
R.(Z) = average of (1 — a)100% worst outcomes of Z

pdf of Z
o
1—a

-1 RQ(Z)./ 1

1

Ro(Z) = E[Z]; Ri(Z) = worst outcome of Z
Z; safely below Z, when R, (Z1) < R, (2>)

11/ 27



Return to triangular example

Design 1: uncertain response /3

Design 2: uncertain response Z;

1
pdf of Z; T~ pdf of Z;
"~
_1.9/ Roc(Zz)‘\ \
-1 Raz)/ 1

Averages of worst 10% outcomes:
Ro.g(Zl) = 0.58 and Ro,g(Z2) =0.28 (better)

Response of Design 2 safely below that of Design 1
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Advantages of superquantile risk (s-risk)

Modeling considerations:

adapts to any level of “safety” (can vary )
focuses on the “bad” tail (promotes resilience)
promotes diversification

connects with dual utility theory

probes deeper than expected utility theory

relates to risk-neutral decisions under stochastic ambiguity

Computational considerations:

preserves convexity (continuity)
easier to find globally optimal designs and decisions
when using s-risk,
optimization under uncertainty “no harder” than deterministic
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Connection: failure probability and superquantile risk

Superquantiles lead to a (best) conservative approximation of
failure probability through buffered failure probability
(Rockafellar & Royset '10, Norton et al. '17, Mafusalov et al. '18):

Ra(g(x, V) <0
<= buffered failure probability of g(x, V) <1—«
= Prob(g(x,V)>0) <1-a

Constraints on s-risk can be reinterpreted in probabilistic terms
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Risk-adaptive learning and surrogate building
Response g(x, V) costly to compute (high-fidelity simulation)
Leverage approximating responses h(x, V') (low-fidelity simulations)
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Risk-adaptive learning and surrogate building
Response g(x, V) costly to compute (high-fidelity simulation)
Leverage approximating responses h(x, V') (low-fidelity simulations)

Risk-adaptive surrogate building;:
find function f such that g(x, V) safely below f(h(x, V))
i.e., Ry (g(x, V)) < Ra(f(h(x, V)))

Flexibility: h(x, v) vector-valued, possibly hj(x, v) = x;, etc.
Example: h(x,v) = lower-level surrogate and f(h(x,v)) =

ao+a x+c'v+boh(x,v)+a xh(x,v)+ " vh(x,v)+ b[h(x, v)]?
Finding f amounts to finding coefficients ag, a, 3, by, b, ¢, C
Notation: Y = g(x, V), X = h(x, V); view x as “random” over

design space (set-based design)
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Risk-adaptive learning and surrogates (cont.)
Response quantity: random variable Y (high-fidelity simulation)

Approximations: random vector X (low-fidelity simulations)

Find f such that Ry(Y) < Ra(f(X))
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Risk-adaptive learning and surrogates (cont.)

Response quantity: random variable Y (high-fidelity simulation)
Approximations: random vector X (low-fidelity simulations)

Find f such that Ry(Y) < Ra(f(X))

How can this be achieved without being overly conservative?
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Risk-adaptive learning and surrogates (cont.)

Response quantity: random variable Y (high-fidelity simulation)
Approximations: random vector X (low-fidelity simulations)

Find f such that Ry(Y) < Ra(f(X))

How can this be achieved without being overly conservative?

Reasonable: minimize the error of Y — f(X)

But using what measure of error? Least-squares will not do

Superquantile regression possible (but not discussed here)
(Rockafellar, Royset, Miranda '14)
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Risk-adaptive learning algorithm
For simplicity, f(X) = cp + ¢ " X, with ¢ € R¥

Two-step algorithm:

1. Solve min {CTE[X] + R (Y — cTX)} + Allcllx

ceR

2. Set g = Ry(Y — ¢ X)

Step 1 (Residual risk minimization)
convex problem; scalable
problem size is data independent
resembling problem in SVM

Step 2 (s-risk computation)
either 1D convex problem or sorting (quick)

Rockafellar & Royset '15a; Royset, Bonfiglio, Vernengo, Brizzolara '17
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Theoretical results

Conservative surrogate on training data:
For o € (0,1) and (cp, c) computed by risk-adaptive learning,

Ro(Y) < Ra(co + ¢ X)

with (X, Y) distributed according to training data

Rockafellar, Uryasev, Zabarankin '08; Rockafellar & Royset '15a
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Theoretical results

Conservative surrogate on training data:
For o € (0,1) and (cp, c) computed by risk-adaptive learning,

Ro(Y) < Ra(co + ¢ X)

with (X, Y) distributed according to training data

Consistency:
For o € (0,1) and (cp, c) computed by risk-adaptive learning,

Ra(Y) < Ra(co + ¢ X) in the limit as training size — oo

with (X, Y) having the actual (true) distribution

Rockafellar, Uryasev, Zabarankin '08; Rockafellar & Royset '15a
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Multi-disciplinary 3D hydrofoil design

Surface-piercing super-cavitating hydrofoil

17 design variables; 5 uncertain parameters

Quantities of interest: hydrodynamical and structural

308 high-fidelity 3D URANSE solves

3063 high-fidelity 3D FEM solves

19830 low-fidelity 3D URANSE solves and 3D FEM solves

Bonfiglio & Royset '18
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Risk-adaptive learning of lift force

high fidelity output

low fidelity output

Accurate predictions possible
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Risk-adaptive learning of lift force (cont.)

Surrogate has 1438 coefficients to be learned
Sparsity (model selection) across 20 surrogates:
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Risk-adaptive learning of displacement
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Poor correlation between low- and high-fidelity simulations
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Risk-adaptive learning of displacement (cont.)

Surrogate has 1+44 coefficients to be learned
Sparsity (model selection) across 20 surrogates:
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Uncertainty in surrogates: lift
Not standard deviation, but superquantile deviation!
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Uncertainty in
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Poor low-fidelity: uncertain surrogates, but still conservative
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Impact in multi-disciplinary 3D hydrofoil design
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x [m]
displ. drag/lift  lift  stress margin
[m] [t] [MPa]
Prediction | 0.109 0.139  36.8 —142
Actual 0.060 0.130 377 —410
Benchmark | 0.097  0.132 353 —204
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