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Abstract: The rise of online marketplaces has raised customer expectations regarding customization and lead time. It poses

significant challenges to manufacturing firms and prompts a move from make-to-stock to a more flexible make-to-order

system. Compared to make-to-stock settings, make-to-order systems cannot smooth fluctuations in demand using available

stock. While viewing dynamic pricing as a useful strategy to balance supply with demand, many manufacturing firms can

also create capacity flexibility. In that scenario, system costs could be cut by managing capacity and demand simultaneously.

In this paper, we consider a make-to-order production environment with base and surge capacity as well as the ability to

adjust product pricing. Our main focus is on operational decision-making, assuming that base and surge capacity are fixed,

but activating the surge capacity incurs a setup cost. Initially, we propose a stochastic control model to reflect this complex

decision problem. However, our initial model leads to an intractable dynamic programming problem. To overcome this,

we convert the problem to a more tractable diffusion control problem. This approach helps to reveal the conditions under

which utilizing flexible capacity is more advantageous than relying solely on fixed capacity. When flexible capacity is

advantageous, we provide a solution to the diffusion control problem that can guide optimal capacity and price adjustments.

We discover an interesting interplay between capacity adjustment and dynamic pricing. In particular, we find that the price,

which aims at reducing congestion, may not monotonically increase with the congestion level when capacity adjustments

incur a fixed cost.
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1 Introduction

The rise of online marketplaces such as Amazon, eBay, and Walmart has brought significant challenges to

manufacturing firms. For one thing, customers are now expecting highly customized items with even shorter

lead times. This is also true in business-to-business sectors, where individualized, engineering-to-order

approaches are becoming more common. Another trend is the ongoing digitization of manufacturing, which

results in mass customization and a shorter product life cycle. For those reasons, manufacturers are urged to
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move from a traditional make-to-stock (MTS) manufacturing environment to a more flexible make-to-order

(MTO) manufacturing environment because demand for highly customized products cannot be economically

produced to stock (similar to customer services that cannot be physically stored). However, a major challenge

in implementing the MTO approach is matching supply with demand. This is because fluctuations in demand

cannot be smoothed by available stock, potentially causing long delays in order processing in periods of high

demand and idle capacity in periods of low demand. While longer wait times lead to customer dissatisfaction

and/or loss of customer lifetime value, idle capacity results in investment waste.

From a demand-control perspective, dynamic pricing has been recognized as a popular strategy for

increasing supply chain efficiency in MTO production setups. For instance, Tesla adjusts the price of its

electric vehicles based on supply and demand, in addition to customers’ selected features and options.

Similarly, Nike offers custom-designed sneakers on its website, where prices vary based on colors, material

choices, and market conditions. To further balance demand and supply, many manufacturing firms have

capacity flexibility at their disposal. A common approach to achieving capacity flexibility in manufacturing

is to combine base capacity with surge capacity. Base capacity refers to the amount of production that can

be sustained over a long period of time, while surge capacity allows for temporary increases in production

to meet unexpected demand or short-term spikes in orders. In the automotive industry, car manufacturers

can achieve capacity flexibility by opening and closing production lines. For instance, a factory with n+ 1

production lines can choose between running n or n+ 1 lines. In this case, n of the lines constitute the base

capacity, while the remaining line can be turned on and off as needed, thereby serving as surge capacity

(Wu and Chao 2014). Alternatively, surge capacity can be procured by commissioning an external capacity

provider (ECP) who offers manufacturing as a service.1 For example, in the shoe manufacturing industry,

an ECP can be a 3D printing bureau that accepts outsourced orders from a shoe factory, enabling the shoe

factory to expand its otherwise rigid internal production capacity as needed.

In this paper, we study a queueing model that serves as a parsimonious mathematical representation

of an MTO manufacturing system offering multiple products. The system features both base and surge

production capacity, and it adapts pricing to balance supply with demand. We model the base capacity as the

primary production server and the surge capacity as the secondary server. The primary server is continuously

operational, whereas the secondary server can be switched on and off as needed to meet fluctuating demand.

However, activating the secondary server incurs a fixed setup cost of C, necessitating careful management of

switching operations. As the system does not keep inventory, delays in order fulfillment pose a concern. In

addition, the system can adjust product prices dynamically, influencing order arrival rates. The goal is to

identify a joint capacity adjustment and dynamic pricing strategy that maximizes long-term average profit,

calculated as profit from product sales minus waiting costs. Notably, capacity adjustments are path-dependent

1 An ECP provides on-demand flexible production capabilities through its own production facilities, allowing for remote production
if it is logistically feasible (Rauschecker et al. 2014).
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decisions as they involve determining the timing of activating and deactivating the secondary server. To

jointly optimize capacity adjustment and pricing decisions, we adopt a rigorous stochastic control framework

that accounts for the stochastic uncertainties in both demand and production.

The problem of finding an optimal joint capacity adjustment and dynamic pricing strategy is generally

complex and not amenable to exact analysis. Therefore, we apply standard approximation techniques

commonly used in the literature. We assume that the manufacturing firm operates with a large demand

volume and is functioning at a critical capacity, which we will define later. In this scenario, we can use the

traditional heavy-traffic regime as an approximation to the original stochastic control problem. By analyzing

the solution to the diffusion control problem (DCP) that arises in the heavy-traffic regime, we can readily

convert it into a control strategy for the original MTO system. We use a diffusion approximation to analyze

the queueing system in our model for two main reasons. First, the manufacturing firm we model operates at

a high demand volume with in-house capacity nearly matching the demand, which is a suitable parameter

regime to apply heavy-traffic approximation. Second, a diffusion approximation allows decisions to be

optimized “under very weak distributional restrictions on model input” (Bradley and Glynn 2002).

We outline the contributions of this paper in three aspects.

Modeling: We utilize a formal stochastic control framework to investigate joint capacity adjustment and

dynamic pricing. The two control levers, capacity adjustment and pricing, generate complex feedback loops

in the system dynamics, resulting in a challenging decision problem. We overcome this challenge by deriving

and solving an approximating DCP. We then translate the solution to the DCP into an easy-to-implement

joint capacity adjustment and pricing strategy. In contrast to the prior research, our model incorporates both a

fixed cost of expediting and stochastic expedited processing times. We further generalize the model to allow

for on-hand inventory, enabling us to model a make-to-stock setting.

Methodology: This paper establishes the well-posedness of the solution to the Bellman equation that arises

from the DCP. Distinct from the extant literature on optimal switching that needs to deal with a pair of

linear differential equations (thereby admitting explicit solutions), our work requires dealing with a pair

of nonlinear differential equations that do not satisfy the global Lipschitz continuity condition and cannot

be explicitly solved. We overcome the technical challenge by analyzing the structural properties of the

differential equations. This technical hurdle methodologically distinguishes our paper from prior works on

optimal switching.

Managerial Insights: Our model and analysis provide several useful insights into the control of MTO

systems that have access to both flexible capacity and real-time pricing capability. Taking a single-product

system as an example, we find that when the fixed cost is not prohibitively high, meaning that surge capacity

is economically valuable, the manufacturing firm should use a capacity adjustment strategy that activates

surge capacity when the number of outstanding orders exceeds a certain level b and turns it off when it falls

below another level a. Furthermore, we uncover a rich interplay between on-demand capacity adjustments
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and dynamic pricing decisions. Interestingly, we show that the price does not always increase with the

congestion level. Instead, the manager may choose to raise prices first to curb customer demand as the

congestion level rises to a critical point, after which lowering the price will best serve the manager’s interests.

To the best of our knowledge, this is the first paper showing a non-monotonic structure for congestion pricing

when the congestion level is unobservable. We attribute this “abnormality” to the capacity expansion and

shrinkage mechanisms and elaborate on it later in the paper.

The remainder of this paper is structured as follows: Section 2 summarizes the relevant literature. Section 3

introduces our model. Due to the intractability, we formulate and solve an approximating DCP in Section 4,

along with the main theoretical results. We also briefly demonstrate how these results carry over to an MTS

system in the same section. Section 5 describes our proposed policy and elaborates on the atypical pricing

structure. We present extensive numerical studies in Section 6 and conclude in Section 7.

2 Literature Review

Pricing in queues. Our approach to modeling dynamic pricing and its impact on demand is based on a

stream of research studying dynamic pricing for queues. Yoon and Lewis (2004) study a problem of dynamic

pricing and admission control for a system where arrival and service rates are nonstationary and customers

are sensitive to prices. They establish several structural properties of the optimal policy, including the

monotonicity of the optimal prices in the state of the system under various cost structures. Ata and Shneorson

(2006) consider the problem of dynamically controlling the arrival and service rates in a service facility

to optimize long-run average system welfare. They propose a solution to determine the optimal dynamic

prices and service rates a system manager should set when serving delay-sensitive, rational customers. Kim

and Randhawa (2018) examine the value of dynamic pricing to maximize revenues in queueing systems.

They demonstrate that when demand volume is on the order of n, static pricing causes a revenue loss of

the order of n1/2, whereas dynamic pricing can reduce the loss to the order of n1/3, and a two-price policy

can achieve most of the benefits of dynamic pricing. In an earlier work, Hall et al. (2009) observe a similar

result: what they call the “constant price up to cutoff state” (a special two-price policy in Kim and Randhawa

(2018)) results in revenue very close to that gained by a general dynamic pricing policy. More recently, Ata

and Barjesteh (2023) consider the dynamic control of a multiclass make-to-stock queue, where multiple

types of products are produced and stored in inventory to satisfy customer demand. The paper incorporates

pricing and outsourcing decisions, extending the classic model studied in Wein (1992). Gao and Huang

(2023) consider a model slightly more general than that in Ata and Barjesteh (2023) and establish the

existence of a unique smooth solution to the associated Bellman equation. They also prove the asymptotic

optimality of the proposed policy. Our study is most closely related to Çelik and Maglaras (2008) in that

both their paper and ours consider a control problem faced by an MTO manufacturer who offers multiple

products to customers to maximize profit through dynamic pricing, scheduling, and using surge capacity. In
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addition, both their paper and ours conduct analysis based on the approximating DCPs. There are, however,

several notable distinctions between these two works. First, in their work, orders can be instantaneously

expedited via surge capacity, whereas we assume the order processing time on the surge capacity follows

some general distributions. This leads to very different DCPs: the controlled process in Çelik and Maglaras

(2008) is a one-dimensional workload process, whereas the controlled process in our paper consists of both a

one-dimensional workload process and a stochastic process taking binary values indicating the status of the

surge capacity. Second, our model incorporates both a setup cost and a per-unit-of-time manufacturing cost

related to the surge capacity, whereas in Çelik and Maglaras (2008) the system is assumed to incur a cost per

expedited order. Our consideration of setup cost C leads to an atypical structure of pricing scheme, as shown

in §5.2, a feature absent in Çelik and Maglaras (2008). Third, Çelik and Maglaras (2008) approximate the

revenue function by a Taylor expansion, making their Bellman equation a Riccati equation, whereas we do

not make approximations to our profit function. Although this difference adds another level of complexity to

our analysis, it shrinks the approximation errors, as shown in §6.1.1.

Optimal switching. This paper falls into a problem category known as “optimal switching”, which

involves switching costs considered as fixed investments required to realize the operational advantages

of an appropriate regime. Duckworth and Zervos (2001) study an optimal two-regime switching problem

and derive and solve the Bellman equation. Zervos et al. (2013) consider the problem of an investor who

seeks to maximize the expected discounted cash flow by sequentially buying and selling one share of

an asset while incurring fixed transaction costs. They model the underlying asset price using a general

one-dimensional Itô diffusion and solve the resulting stochastic control problem in a closed analytic form.

The aforementioned papers consider the discounted cost criterion and therefore are not applicable to the

average cost case, which is the focus of this paper. Wu and Chao (2014) investigate a control problem for a

stochastic production/inventory system with two production modes and frame the problem as an optimal

switching problem for Brownian motion. Adopting an average cost criteria, they establish that the optimal

production policy is of the (s,S) type. To solve the Bellman equation, Wu and Chao (2014) use a similar

approach to ours by considering a parametric family of function pairs and identifying a pair whose area

of intersection is precisely the switching cost. However, unlike our approach, which involves solutions to

nonlinear differential equations, the pair of functions in their analysis are linear differential equations that are

explicitly solvable. We make methodological advances by providing an explicit construction of a solution to

the Bellman equation, not relying on explicit formulas. Along the way, we establish useful properties of the

solution to the Bellman equation. These properties, in turn, facilitate the identification of important structures

of our control policy. Concurrently, Sun and Liu (2023) study an optimal switching problem that arises from

optimizing short-term capacity adjustment decisions in the context of many-server queues; therein, they also

consider customer scheduling and examine the effect of capacity adjustment decisions on scheduling.
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Joint rate and impulse control. Our problem reduces to an instance of joint rate and impulse control if the

speed of service at the secondary server is infinite. Amidst this problem category, Yao (2017) analyzes an

infinite-horizon, continuous-review stochastic inventory system with price-dependent cumulative customer

demand modeled as a Brownian motion and excess demand backlogged. The author shows that inventory

control follows the (s?,S?) policy and characterizes the optimal state-dependent pricing strategy analytically.

Cao and Yao (2018) investigate a stochastic inventory system where pricing and inventory controls are

modeled as rate and impulse controls, respectively. Using stochastic control techniques, they demonstrate

that inventory control is of the control-band type and that the optimal drift rate is first increasing and then

decreasing in the relevant domain. Sun and Zhu (2024a) study a robust impulse control problem that arises

from the need to devise sequencing and outsourcing strategies in the face of model misspecification. Their

control problem involves a drift rate controlled by nature that serves as an imaginary adversary to promote

robustness.

Controlling queues in heavy traffic. From a methodological standpoint, this paper is related to the stream

of research that studies queueing controls in heavy traffic, which can be seen in various works such as

Plambeck (2004), Ata et al. (2005), Ghosh and Weerasinghe (2007, 2010), Ghamami and Ward (2013), and

Liu and Sun (2022). These works often utilize heavy traffic approximations that result in either drift-rate or

singular control problems for diffusion models, which are more amenable to analysis.

Demand and/or capacity management in make-to-stock systems. Last but not least, this paper is related

to the literature on demand and/or capacity management in make-to-stock systems. We remark that we

allow on-hand inventory, which extends our model to that of a make-to-stock system. Bradley and Glynn

(2002) consider a manufacturing system that produces a single product using a make-to-stock approach. In

their model, inventory is managed through a base-stock policy, and capacity and inventory are treated as

joint decision variables. Although capacity and inventory decisions are optimized jointly in Bradley and

Glynn (2002), they occur on different time scales: capacity decisions are regarded as strategic decisions,

whereas inventory decisions are operational. By contrast, in our model, capacity adjustments fall under

operational decision-making. Some make-to-stock systems can prioritize orders based on profitability and

other factors, which is yet another type of capacity management. For example, in Janakiraman et al. (2018),

fixed capacity is allocated among a finite set of products, making the allocation of scarce capacity among

a suite of products a key ingredient of their problem. Demand control, particularly in the form of pricing,

has also been investigated in the context of a make-to-stock environment. For example, Federgruen and

Heching (1999) examine the joint determination of pricing and inventory replenishment strategies in both

finite and infinite horizon models. Their objective is to maximize the total expected discounted profit, or its

time-average value.
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3 Model

Notations. Let (Ω,F ,{Ft}t≥0 ,P) be a filtered probability space supporting all random quantities of

interest. We use 1{·} to denote an indicator function and ∆X(t) := X(t)−X(t−) the jump of some cdlg process

X at time t. We let [x]+ := max (0, x) and [x]− :=−min (0, x) denote the positive and negative parts of x,

respectively. For two continuous functions f ,g : R→R, we say x∈R is an “intersect point” if f (x) = g(x),

and x is a “cross point” if x is an “intersect point” and f − g changes sign at x. We use bold-face letters to

represent vectors and write the inner product of aaa and bbb as 〈aaa,bbb〉. We say aaa≥ bbb if aaa and bbb have the same

dimension and the inequality holds component-wise.

Consider an MTO production system producing multiple products, indexed by k = 1, . . . ,K, to a market of

price-sensitive customers. Conforming to the common language in queueing theory, we will refer to a request

for one unit of product k as a class k job. We model the arrival process of class k jobs as a non-homogeneous

Poisson process. Specifically, the number of class k jobs that have arrived up to time t is

Ak(t) := Nk

(∫ t

0
λk(u)du

)
,

where Nk is a unit-rate Poisson process and is independent of anything else. Jobs that cannot be processed

immediately upon arrival are held in a dedicated queue with an infinite buffer, and jobs in the same dedicated

queue are processed on a first-come, first-served basis. We call λλλ(t) := (λk(t)) the instantaneous demand

rate vector at time t, and use {λλλ(t) : t ≥ 0} to represent the K-dimensional demand rate process. The system

manager can determine the demand rate vector at time t by quoting a price vector ppp(t) := (pk(t)), where

pk(t) represents the price for product k at time t. We assume that a demand function Ξ exists to capture

the price-sensitivity of demand by mapping each price vector to an instantaneous demand rate vector, i.e.,

λλλ(t) = Ξ(ppp(t)). Following the literary convention, we assume that Ξ has an inverse function so that we

can define the profit rate π as a function of the demand rate vector; that is, π(λλλ) := 〈λλλ,Ξ−1(λλλ)− qqq〉, where

qqq := (qk) is the vector of the product-specific per-unit production costs. We assume π admits a unique

maximum point λ̄λλ that lies in the interior of the feasible region {λλλ≥ 000 : π(λλλ)≥ 0}. We refer to λ̄λλ as the

nominal demand. Because we can use Ξ−1 to infer the price from the demand rate, we will interchangeably

refer to λλλ and ppp as the pricing decisions.

The time to produce a class k product on the base capacity (primary server) is characterized by a general

distribution Gk with a mean of 1/µk and a squared coefficient of variation of ν2
k . Accordingly, we can define

a renewal process Sk to represent the number of class k jobs produced by the primary server up to time t

if the server were continuously working, where Sk(t) := max{n : ∑
n
i=1 ξi ≤ t} and ξi are independently and

identically distributed (i.i.d.) in Gk. Let Tk(t) be the total amount of time devoted to product k on the primary

server, such that the total number of jobs completed on the primary server up to time t is Sk(Tk(t)). Since the

primary server is continuously operational, we have ∑
K
k=1 Tk(t)≤ t and

L1(t) := t −
K

∑
k=1

Tk(t) (1)
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represents the primary server’s idle time.

Aside from the pricing decisions, the system manager can adjust short-term capacity by activating and

deactivating the surge capacity, modeled as a secondary server. In the rest of this paper, we use secondary

server and surge capacity interchangeably. Similarly, we characterize the production time of a class k job on

the surge capacity (secondary server) by a general distribution Hk with a mean of 1/γk, and the number of

class k jobs produced on the secondary server up to time t by the corresponding renewal process Γk(t) if the

secondary server were continuously working. The short-term capacity adjustment results in two operating

modes. The system is said to be in its “on” mode if the secondary server is operational and in its “off” mode

if the secondary server is deactivated. The transition from one mode to the other is instantaneous, and these

transitions form a sequence of decisions made by the system manager, which are modeled by an adapted,

finite variation, and cdlg process Y (t) ∈ {0,1} with 1 indicating the secondary server is in the on mode

(activated) and 0 the off mode (deactivated). We also define YYY (t) := (Yk(t)), where each component Yk(t) is

an adapted, finite variation, and cdlg process taking values in {0,1} with 1 indicating the secondary server

is currently manufacturing product k and 0 otherwise. Hence, at any time t, ∑
K
k=1 Yk(t)≤Y (t), and we can

define

L2(t) :=
∫ t

0

[
Y (u)−

K

∑
k=1

Yk(u)
]

du (2)

to denote the secondary server’s cumulative idle time up to t when it is operational. Apparently, {L2(t); t ≥ 0}

forms a nondecreasing process. In addition, we assume that switching from the off to the on mode triggers a

setup cost of C, whereas switching from the on to the off mode is free. For greater generality, we assume

keeping the secondary server activated incurs an additional manufacturing cost of c per unit of time.

Let Xk(t) denote the number of class k jobs in the system (in queue or in service) at time t. It follows from

the conservation of flow that

Xk(t) = Xk(0)+Ak(t)− Sk(Tk(t))−Γk

(∫ t

0
Yk(u)du

)
. (3)

We say a controlled process (λλλ,TTT ,YYY ,Y ) is admissible, if it is non-anticipating, and keeps Xk(t)≥ 0 for all k

and t ≥ 0. In addition, for each class k, the system incurs a waiting cost hk(x) per unit of time whenever the

number of class k jobs equals x. We impose the following assumption on hk(x) purely for technical reasons.

ASSUMPTION 1. hk(0) = 0 and limx→∞ hk(x) = ∞ for any k = 1,2, . . . ,K. Also, for any a > 0, there exists

some ã > 0 such that hk(x)> ah′k(x)− ã holds for any x > 0 and any k = 1,2, . . . ,K.

The above assumption is made because we need the cost rate function hk to grow faster than its derivative

at some point in our mathematical proof. To understand the implications of this assumption, we note that

it is satisfied by all polynomial functions of the form hk(x) = ak1xak2 for ak1 > 0 and ak2 ≥ 1. Models in the

classical inventory control literature often assume linear or increasing convex holding cost functions to derive
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optimal policies; for instance, the optimality of base stock policies in a multiple-period inventory model with

backlogging requires this assumption (see Theorem 3, Chapter 10 by Karlin and Scarf (1958)).

The manager’s objective is to find an admissible (λλλ,TTT ,YYY ,Y ) to maximize

lim inf
t→∞

1
t
E

[∫ t

0
π(λλλ(u))du−

K

∑
k=1

∫ t

0
hk(Xk(u))du− c

∫ t

0
Y (u)du−C ∑

u≤t

[∆Y (u)]+
]
, (4)

where the notation ∑u≤t [∆Y (u)]+ := supP∈Pt ∑u∈P[Y (u)−Y (u−)]+ represents positive jumps of Y accumulated

by time t, and Pt is defined as the class of all partitions over [0, t]:

Pt := {{ti}n
i=1 : 0 = t0 < t1 < . . . < tn = t, for any n∈ {1,2, . . .}} .

In (4), the first term represents the profit; the second term describes the cost of holding orders; the third term

is the surge capacity cost; and the last term captures expenses associated with switching operations.

Problem (4) is complex and does not lend itself to tractable solutions via exact analysis. As a result, it

makes sense to consider approximation techniques. As a starting point, notice that if we temporarily ignore

all randomness in the system and any potential capacity constraints, the system manager will simply use the

“fluid-optimal” price p̄pp := Ξ−1(λ̄λλ), as this price maximizes profit rate. This motivates the consideration of an

operating regime under which the base capacity “matches” nominal demand, resulting in moderate congestion

caused by stochastic variability. Consequently, congestion effects are considered to be second-order. To

refine the fluid-optimal pricing solution, we implement a second-order correction, resulting in a DCP, which

we formally describe in (4). Formulating and solving the DCP that approximates the original problem will be

the main focus of the next section.

REMARK 1. The fixed setup cost is a key feature in our model; this feature differentiates our model from

many other models of make-to-stock production with a secondary capacity source. We recall that in the

classical multiple-period inventory control literature, there is a clear dividing line between models that

incorporate a fixed order cost and those that do not; the optimal policies in the former class of models are

generally of the (s,S) type, whereas the optimal policies in the latter class are generally of the order-up-to

type. Analogously, we find that our fixed cost model yields some insights that are absent from similar models

that omit a fixed setup cost for the surge capacity, as we will discuss in the sequel.

4 DCP and the Equivalent Workload Problem

4.1 The DCP formulation

To better understand our approximation framework, it is instructive to view our original decision problem as

a member of a series of problems indexed by Λ, with relevant model primitives scaled so that

Ξ
−1(·) :=

√
ΛΞ̂

−1(·/Λ), qk :=
√

Λq̂k, hk(·) :=
√

Λĥk(·/
√

Λ), c :=
√

Λĉ and C :=
√

ΛĈ, (5)



10 Author: Enhancing Make-to-Order Manufacturing Agility

where Ξ̂−1, q̂k, ĥk, ĉ, and Ĉ are corresponding baseline quantities or functions that do not scale with Λ. A

simple algebraic manipulation shows that under the scaling condition (5), the nominal demand rate of the

problem Λ is λ̄λλ = Λλ̂λλ, where λ̂λλ solves maxλλλ

〈
λλλ, Ξ̂−1(λλλ)− qqq

〉
. This implies that ∑

K
k=1 λ̄k increases linearly in

Λ, so it is also convenient to treat λ̄ := ∑
K
k=1 λ̄k as a scaling parameter reflecting the system scale. The main

purpose of applying the scaling conditions mentioned above is to establish an appropriate objective function,

with all terms in (4) being of equal order, as λ̄→∞. Otherwise, they are not of equal importance for λ̄ large

enough; that is, some terms will be dominated by others and therefore become insignificant as λ̄→∞. For

further understanding, we provide in EC.3 a further discussion on the order of each term in the objective as

well as the baseline quantities. Because we are mostly concerned with deriving the DCP rather than formally

establishing a proper notion of asymptotic optimality, in what follows, we continue to use hk, c,C,Ξ−1, and

qk (hence π) with the understanding that they need to satisfy appropriate scaling conditions so that they are

compatible with the scaling imposed on µ and γ that will be introduced in a moment.

The MTO system has high customer demand, a large base production capacity, and is critically loaded in

the following sense:
K

∑
k=1

ρk = 1−ψ for ρk := λ̄k/µk, (6)

where ψ is a quantity perceived to be of order 1/
√

λ̄. More formally, we can let ψ := ψ̂/
√

λ̄, where ψ̂ is

a constant that does not scale with λ̄. To see that the scaling condition (6) can arise naturally in practice,

consider a manufacturer who has a primary goal of maximizing profit and a secondary goal of making

efficient use of the production capacity. Then it would make sense for the manufacturer to set a base capacity

level that approximately matches demand, such that ∑
K
k=1 ρk ≈ 1. Indeed, as noted by Bradley and Glynn

(2002), the high cost of capacity can force a firm to set capacity at a level that leads to high utilization at the

production facility, forcing the facility into a “heavy traffic” regime where the system can be approximated

by a Brownian motion-based model.

The particular choice of the scaling condition ψ := ψ̂/
√

λ̄ is standard in modeling the heavy-traffic

operating regime (see p. 1136 in Çelik and Maglaras (2008)). A key insight is that when using the fluid-

optimal price and capacity level (6), the system capacity will naturally have a high utilization with a mild

level of congestion overall, and the resulting congestion-related costs will be moderate. This means that

we will need to fine-tune the corresponding pricing decisions and develop an appropriate pricing scheme.

Specifically, we consider pricing schemes of the following form:

λλλ(t) = λ̄λλ−ϑϑϑ(t) for t ≥ 0, (7)

where ϑϑϑ is a correction term seen to be an order of magnitude smaller than λ̄. More formally, we let

ϑϑϑ :=
√

λ̄θθθ, where θ is a control process independent of the scaling parameter λ̄.
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We assume the two vectors, µµµ := (µk) and γγγ := (γk), are proportional and satisfy the scaling condition:

γk

µk
= γ̄, (8)

where we have defined γ̄ := γ̂/
√

λ̄ for some γ̂ that does not scale with λ̄. This assumption simply means that

if a product requires more production time from the primary server, it will also consume more machine time

on the secondary server. This makes sense in practice because the length of time it takes to manufacture a

product is typically determined by its inherited characteristics, such as manufacturing complexity. Equation

(8) also means that the processing speed of the secondary server will be in the second order, which is a

reasonable assumption because the base capacity already matches the nominal demand in the first order.

To find the diffusion process that approximates X := (Xk), we apply the strong approximation to A := (Ak)

and S := (Sk) in a manner similar to that in Çelik and Maglaras (2008) to get

Ak(t) = λ̄kt −
∫ t

0
ϑk(u)du+

√
λ̄kÂk(t)+ εak(t) and Sk(Tk(t)) = µkρkt − µkVk(t)+ νk

√
λ̄kŜk(t)+ εpk(t),

(9)

where Âk and Ŝk are two independent, standard Brownian motions capturing stochastic fluctuations in order

arrivals and completions; in Equation (9), εak(t) and εpk(t) are error terms from the strong approximation,

and they are an order of magnitude smaller than
√

λ̄ (for every fixed t). In addition, we have defined

Vk(t) := ρkt −Tk(t) (10)

as the deviation of the actual allocated time to process class k jobs from the “nominal” allocated time ρkt.

Next, by applying the functional strong law of large numbers type approximation for renewal processes, we

get

Γk

(∫ t

0
Yk(u)du

)
= γk

∫ t

0
Yk(u)du+ εrk(t), (11)

where εrk(t) is an approximation error term that has an order of magnitude smaller than
√

λ̄. Plugging

(7)–(11) into (3) and ignoring all the error terms, we arrive at the desired diffusion approximation for Xk

(which we recall is the process that tracks the number of class k jobs over time and is defined in (3)). In

particular, the approximating diffusion process, which we denote by Zk, is given as the solution to the

following stochastic integral equation:

Zk(t) = Zk(0)−
∫ t

0
ϑk(u)du+ µkVk(t)− γk

∫ t

0
Yk(u)du+σkBk(t), (12)

where σk :=
√

λ̄k(1+ ν2
k), Yk tracks the operating mode of the system, and (Bk) are K independent standard

Brownian motions.

Define δ(ϑϑϑ) := π(λ̄λλ)− π(λ̄λλ−ϑϑϑ), which can be regarded as the profit loss due to the deviation from the

nominal demand rate. Then, using Zk in (12) to approximate Xk, we arrive at the diffusion approximation for

the objective function in (4) which is given by

lim sup
t→∞

1
t
E
[∫ t

0
δ(ϑϑϑ(u))du+

∫ t

0

K

∑
k=1

hk(Zk(u))du+ c
∫ t

0
Y (u)du+C ∑

u≤t

[∆Y (u)]+
]
. (13)
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4.2 Equivalent Workload Formulation

The above DCP is a multidimensional stochastic control problem. To achieve dimensional reduction, we

next develop a one-dimensional formulation that is equivalent to the DCP, and we refer to it as the workload

problem. To that end, let mmm = (mk) := (1/µk) and define the one-dimensional workload process as

W (t) :=
K

∑
k=1

mkZk(t) for t ≥ 0. (14)

Multiplying (12) by mk and adding over k = 1, . . . ,K, plus using (1), (2), (6), (10), we obtain

W (t) =W (0)−ψt −
K

∑
k=1

∫ t

0
mkϑk(u)du− γ̄

∫ t

0
Y (u)du+σB(t)+L(t) for t ≥ 0, (15)

where σ :=
√

∑
K
k=1 λ̄k(1+ ν2

k)m
2
k , B(t) a standard Brownian motion, and L(t) := L1(t) + γ̄L2(t) is a non-

decreasing process representing the cumulative weighted sum of idleness from the primary and secondary

servers (during activation time).

To formally state the workload problem, let h̄(·) be defined as

h̄(w) := min
{ K

∑
k=1

hk(zk) :
K

∑
k=1

mkzk = w
}

for w≥ 0, (16)

so that h̄ is the work-based waiting cost function. With these preparations, we can state the workload problem

as follows: We seek the triplet (ϑϑϑ?,L?,Y ?) that solves the constrained optimization problem

minimize lim sup
t→∞

1
t
E

[∫ t

0
δ(ϑϑϑ(u))du+

∫ t

0
h̄(W (u))du+ c

∫ t

0
Y (u)du+C ∑

u≤t

[∆Y (u)]+
]

(17)

subject to (15), W (t)≥ 0, and L(t) is non-decreasing with I(0) = 0. (18)

It is known from the Skorokhod map that for any controlled processes ϑϑϑ and Y , there exists a regulator I,

which is a nondecreasing process satisfying∫ t

0
1{W (u)>0}dI(u) = 0, for any t ≥ 0, (19)

yields the minimal idleness in order to keep W non-negative (see, e.g., Chapter 2.2 on pp. 20–21 (Harrison

2013) for the reference). Let L? be the process satisfying (19). Then the workload problem is reduced to

seeking (ϑϑϑ?,Y ?) to solve the problem (17).

4.3 The Solution

We apply Bellman’s principle of optimality to characterize the solution to the workload problem. To that

end, let v denote the (relative) value function associated with the workload problem and define the convex

conjugate function g(x) := sup
ϑϑϑ

{
xϑϑϑ

T mmm− δ(ϑϑϑ)
}

. Note that g(x) ≥ 0 for any x ∈ R, because ϑ = 0 is a

feasible solution to sup
ϑ

{
xϑϑϑ

T mmm− δ(ϑϑϑ)
}

and δ(000) = 0. We will assume that g is locally Lipschitz continuous
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and exhibits super-linear growth (i.e., for any l ∈R, we have g(x)≥ lx for all x large enough). With reference

to the general control theory, we expect that the value function v, in conjunction with some constant η?,

solves the following Bellman equation, which takes the form of the quasi-variational inequality

min
{

σ2

2
vww(y,w)− (ψ+ γ̄y) vw(y,w)− g(vw(y,w))+ h̄(w)+ cy−η,

v(1,w)+C− v(0,w), v(0,w)− v(1,w)
}
= 0,

(20)

subject to the boundary condition vw(y,0) = 0 and the requirement that vw(y,w) exhibits polynomial growth

as w→∞. In average cost dynamic programming, η? is interpreted as a guess for the optimal average cost.

Intuitively speaking, the first term in the quasi-variational inequality (20) states the optimality condition if

the status of the secondary server does not change at the state (y,w), whereas the second and third terms

establish the optimality conditions for the system’s transition from off to on and from on to off, respectively.

If a solution v to Equation (20) exists, then we can extract an optimal ϑϑϑ
?, given as

ϑϑϑ
?(y,w) := arg max

ϑϑϑ

{
vw(y,w)ϑϑϑ

T mmm− δ(ϑϑϑ)
}
. (21)

We next draw from our intuition to postulate the structure of the Bellman equation solution. Note that if

costs associated with on-demand production capacity are not exorbitant, it would clearly be advantageous

for the system manager to use surge capacity on a temporary basis. The intuition leads us to conjecture

that the optimal control strategy is a sequential switching policy comprising the following actions: If the

system is currently operating in its off mode, then it is optimal to remain in that mode if W is below a

threshold, say w?
1, and switch to its on mode once W rises above w?

1. On the other hand, if the system is

currently operating in its on mode, then it is optimal to remain in that mode if W is above a certain level,

say w?
0, and switch to its off mode as soon as W drops below w?

0. Clearly, this strategy is well-defined if

w?
0 < w?

1. Moreover, if this strategy, henceforth denoted as Y ?, is indeed optimal, we should be able to find

v0(w) := v(0,w), v1(w) := v(1,w) and η? > 0, such that

σ2

2
v′′0(w)−ψv′0(w)− g(v′0(w))+ h̄(w) = η

? for w∈ [0,w?
1), (22)

σ2

2
v′′1(w)− (ψ+ γ̄)v′1(w)− g(v′1(w))+ h̄(w)+ c = η

? for w > w?
0, (23)

v0(w) = v1(w) for w∈ [0,w?
0], and v0(w) = v1(w)+C for w≥w?

1, (24)

with the boundary condition

v′0(0) = 0 and the requirement that v′1(w) grows polynomially as w→∞, (25)

plus a set of optimality conditions derived from the “principle of smooth fit”:

v′0(w
?
0) = v′1(w

?
0) and v′0(w

?
1) = v′1(w

?
1). (26)
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Because (22) and (23) do not involve the zero-order term (the unknown function itself), they can be reduced

to a pair of first order differential equations for f0(w) := v′0(w) and f1(w) := v′1(w). The observation leads to

the consideration of the class of functions { f0(·,η); η∈R} where f0(·,η) solves

σ2

2
f ′0(w)−ψ f0(w)− g( f0(w))+ h̄(w)−η = 0, (27)

subject to the boundary condition f0(0) = 0 and the function class { f1(·,η); η ∈ R} where f1(·,η) is the

solution to the following differential equation

σ2

2
f ′1(w)− (ψ+ γ̄) f1(w)− g( f1(w))+ h̄(w)+ c−η = 0, (28)

subject to the requirement that f1(w) exhibits polynomial growth as w→∞. For those equations specified by

(27), we also let wη,∞ := inf{w : limx↑w f0(x) =±∞}. Also, it is straightforward to verify that the requirement

(24) leads to ∫ w?
1

w?
0

[ f0(w,η?)− f1(w,η?)]dw =C. (29)

Also, by appealing to (26), we obtain

f0(w?
0,η

?) = f1(w?
0,η

?) and f0(w?
1,η

?) = f1(w?
1,η

?). (30)

In sum, the mission of constructing a solution to the Bellman equation (20) boils down to finding variables

η?, w?
0, and w?

1 such that (29) and (30) hold. Our next result is concerned with the properties of f0 and f1.

PROPOSITION 1. (i) For all w < wη,∞ ∧ wη′,∞, we have f0(w,η)< f0(w,η′) if η < η′; in particular, there

exists a unique η0 > 0 such that f0(w,η0) grows to infinity at a polynomial rate with wη,∞ = ∞, and

limw→wη,∞ f0(w,η) =−∞ for any η < η0. (ii) For all w, we have f1(w,η)> f1(w,η′) if η < η′; particularly,

there exists a unique η1 > 0 such that f1(0,η1) = 0, and f1(0,η)> 0 for any η < η1.

We relegate the proof of Proposition 1 to the e-companion. The most intricate part of the proof is

establishing the stated polynomial growth rate. For this purpose, we adapt and generalize some of the

methodological tools developed in the recent paper by Sun and Zhu (2024b), where the authors establish a

desired polynomial growth rate for a Bellman equation in the form of a Riccati equation.

To spell out conditions under which the triplet (η?,w?
0,w

?
1) exists, we first focus on two benchmark policies

corresponding to f0(·,η0) and f1(·,η1) in Proposition 1. The first policy, denoted as S0, requires Y ≡ 0

regardless of the system state; this corresponds to the case where the production system relies entirely on

in-house capacity, thereby forgoing the option of using on-demand capacity. The second policy, denoted

as S1, sets Y ≡ 1; this describes the scenario where the system always retains the on-demand production

capacity, thereby incurring costs associated with flexible capacity at all times. With respect to ergodic control

of diffusion processes, we can interpret η0 as the long-run average cost incurred by the production system
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under the static policy S0 and η1 as the long-run average cost under the static policy S1. A key intuition is that

the constant η?, if it exists, ought to satisfy η? ≤ η̄ := min(η0,η1), because both S0 and S1 are admissible

policies. The following result is concerned with the number of crossings that f0(·,η) and f1(·,η) can have

for each η that is less than η̄.

LEMMA 1. There exists
¯
η≤ η̄ such that f0(·,η) and f1(·,η) do not intersect on R+ for η <

¯
η, intersect on

R+ but do not cross for η =
¯
η, and cross at exactly two points on R+ for η∈ (

¯
η, η̄) .

The proof of the lemma is provided in the e-companion. Based on Lemma 1, if
¯
η = η̄, then there is no

such η < η̄ that f0(·,η) and f1(·,η) will ever cross. We interpret this case to mean that no matter how small

the fixed cost C is, sequential switching is never optimal. If, however,
¯
η < η̄, then by Lemma 1, we know

that f0(·,η) and f1(·,η) will cross at exactly two points for all η∈ (
¯
η, η̄). We interpret this case to mean that,

for a sufficiently small fixed cost, it is optimal to switch between the different modes.

To avoid triviality, in the rest of the paper we will focus on the latter scenario by further assuming that

¯
η < η̄. It is noteworthy that in this case the two functions, f0(·, η̄) and f1(·, η̄) will not only coincide at w = 0

or w = ∞ but also cross at some finite point; we denote these two points of intersection by w̄0 and w̄1 with

w̄0 < w̄1. The next result provides the condition under which an optimal sequential switching policy exists.

THEOREM 1. Suppose C < C̄ :=
∫ w̄1

w̄0
[ f0(w, η̄)− f1(w, η̄)]dw. Then the following statements are true. (i)

There exists a triplet (η?,w?
0,w

?
1) satisfying (27)–(30). (ii) The “sequential switching policy” characterized

by (w?
0,w

?
1) and the pricing scheme ϑϑϑ

? given by (21) are jointly optimal for the DCP (13). On the other hand,

when C≥ C̄, then (iii) η? = η̄ = min(η0,η1), and if η0 < η1 then the static policy S0 is optimal and otherwise

the static policy S1 is optimal.

The proof of Theorem 1 can be found in the e-companion. The theorem states the conditions under which

the optimal policy for managing surge capacity is of sequential switching or static type. To be more precise,

sequential switching is optimal if the switching cost is not too high, i.e., C < C̄. When C≥ C̄, an optimal

policy for managing the surge capacity is to set the static policy S0 by always sticking to the off mode if

η0 < η1, and to set S1 by always sticking to the on mode if η0 ≥ η1.

4.4 Allowing For On-Hand Inventory

We can extend our model to an MTS system by allowing Xk(t) < 0 (recall that Xk(t) is defined in

(3)), where [Xk(t)]− represents the number of class k products stored as inventory. Assume in this set-

ting the inventory storage has capacity M, and each unit of class k product takes space sk, so that

∑
K
k=1 sk[Xk(t)]− ≤ M. Accordingly, one can define the minimum workload that system can maintain by

−b := min
{

w : ∑
K
k=1 mkzk = w,∑K

k=1 sk[zk]
− ≤M

}
for some b > 0. In addition, we modify the meaning of

hk to let it be a non-negative continuous function with hk(0) = 0 that is strictly increasing in positive x
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and strictly decreasing in negative x. When x < 0, hk(x) represents the cost rate of holding inventory −x.

Similarly, we can define the corresponding work-based inventory/waiting cost function

h̄(w) = min
{ K

∑
k=1

hk(zk) :
K

∑
k=1

mkzk = w,
K

∑
k=1

sk[zk]
− ≤M

}
for w≥−b.

We can easily show that h̄(w) is also strictly increasing in positive w and strictly decreasing in negative w.

The corresponding workload problem can be deduced analogously. Specifically, the workload process for

the MTS system is the solution to the following stochastic integral equation:

W (t) =W (0)−ψt −
∫ t

0
ϑ(u)du− γ̄

∫ t

0
Y (u)du+σB(t)+Lb(t), (31)

where the last term in (31) is a “regulator” ensuring that W is always greater than or equal to the negative

threshold, i.e.,

W (t)≥−b for all t ≥ 0. (32)

In particular, Lb is a one-sided regulator that is non-decreasing and continuous with Lb(0) = 0. It is known

that for a fixed control strategy Y , a regulator Lb satisfying∫ t

0
1{W (u)>−b}dLb(u) = 0, for any t ≥ 0, (33)

yields the minimal idleness in order to keep W ≥−b. So under the make-to-stock extension, the DCP further

simplifies to the one that seeks a pair (ϑϑϑ?,Y ?) to minimize (13) subject to (31), (32) and (33).

As in §4.3, the solution to the new problem can be characterized via the quasi-variational inequality (20)

subject to the boundary condition vw(y,−b) = 0 and the requirement that vw(y,w) exhibits polynomial growth

as w→∞. We can show that the main result (Theorem 1) still holds under the make-to-stock extension.

THEOREM 2. The conclusion in Theorem 1 holds under the extension to the make-to-stock model.

We relegate the proof of Theorem 2 to the e-companion. The main technical challenge therein is that under

the make-to-stock extension, we no longer have the monotonicity of the waiting cost function h̄(x) in x≥−b

because W (t) can take negative values. Indeed, h̄(x) is strictly decreasing in negative x and strictly increasing

in positive x. In addition, the control over the moments of the W process gets more complicated when W (t)

can also take negative values.

5 Policy Recommendations

In this section, we provide policy recommendations based on the solution to the workload problem. Because

the workload problem is equivalent to the corresponding DCP, in the following, when we mention the DCP

solution, we really mean the solution derived from the workload problem.

We interpret the DCP solution in the context of the corresponding original system by proposing a dynamic

control policy, utilizing the results in Theorem 1. Note that we can numerically solve the equations (27)
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and (28) through the finite difference method. The DCP solution can then be interpreted in a way as some

“near-optimal” admissible policy to the original control problem for the MTO system, i.e., problem (4).

Intuitively, because the MTO system is facing relatively high demands, the optimal control policy for the

original control problem should not be “far” from those of the DCP. This framework for interpreting the DCP

solution in the context of the original queueing system was pioneered by Harrison (1988) and is widely used

in the studies of control problems in queueing systems.

There are three control levers related to (4): dynamic pricing, capacity management rules, and scheduling.

In the sequel, we first interpret the three control levers separately in the original MTO system in §5.1. Then,

in §5.2, we expose the interesting structure of the pricing scheme under this system. Finally, we explain the

managerial insights into the interplay between dynamic pricing and capacity management in §5.3.

5.1 Interpretation of the DCP Solution

Dynamic Pricing. Given the solution vw(y,w) to the quasi-variational inequality and the current system

state (y,w), we derive the optimal demand rate adjustment term ϑϑϑ
?(y,w), which is the solution to the equation

mmmvw(y,w)−∇δ(ϑϑϑ) = 000.

We can then derive a pricing policy:

ppp?(y,w) = Ξ
−1
(

λ̄λλ−ϑϑϑ
?(y,w)

)
.

To gain some intuition, it helps to consider a single-product MTO system. In this case, the proposed pricing

policy reduces to p?(y,w) = Ξ−1
(
λ̄−ϑ?(y,w)

)
, where ϑ? solves mvw(y,w) − δ′(ϑ) = 0 (the subscripts

indicating the classes of jobs are suppressed). Hence, the DCP solution roughly states that the proposed

pricing policy should have a very similar structure as vw(y, ·). Based on our proof arguments of Theorem 1, we

know that when C < C̄, vw(0, ·) could be a non-monotonic function with a single maximum point, although

vw(1, ·) is always increasing. This suggests it could be the case that as the congestion level increases but is

not too high, the manager should raise prices to limit customer demand. When the system is too congested,

however, it may be in the manager’s best interest to lower the price. Indeed, as we will demonstrate in §5.2,

under a logistic demand model, a pricing policy with a structure of first increasing then decreasing frequently

appears to be optimal. This rather intriguing finding reveals a strong interaction between dynamic pricing and

the setup cost of the surge capacity. Previous studies show that in the absence of the setup cost, the pricing

scheme is a monotonically increasing function of the system congestion level (see, e.g., Çelik and Maglaras

(2008), Ata and Barjesteh (2023)). The present paper seems to be the first to reveal a non-monotonic pricing

scheme structure when queues are unobservable. We offer a detailed explanation of this atypical pricing

scheme in §5.3.
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Capacity Management Rule. As we have discussed in Theorem 1, depending on whether C < C̄ or C≥ C̄,

a dynamic or static capacity management policy is optimal for the approximating problem. Hence, we

propose the following capacity management rule Y ?(·):

• If C ≥ C̄, we apply a static capacity management rule. Let Y ?(y,w) ≡ arg mini {ηi : i = 0,1} (let

Y ?(y,w)≡ 1 if η0 = η1), where η0 and η1 are defined in Proposition 1, such that the secondary server is

always off/on.

• If C < C̄, we apply a sequential switching rule defined by w?
0 and w?

1 as in Theorem 1: Y ?(y,w) = 1 if

y = 0 and w > w?
1; Y ?(y,w) = 0 if y = 1 and w < w?

0.

Scheduling Rule. The workload problem defined in (16) indicates the optimal allocation of the total

workload into different classes for the DCP. Therefore, given the workload w, the solution

xxx?(w) = arg min
{ K

∑
k=1

hk(xk) :
K

∑
k=1

mkxk = w
}

(34)

(with ties broken consistently and arbitrarily) suggests we try to keep the queue length of each class as close

to xxx?(w) as possible. We propose the following scheduling rule:

• At each time, whenever the primary server is available or the secondary server is both on and available

and there are jobs waiting in some queues, serve the head-of-the-line job from class

i∈ arg max
k
{Xk(t)− x?k(w)}

with ties broken consistently and arbitrarily.

As in Ata and Tongarlak (2013) and a few related studies, different waiting cost functions result in different

scheduling rules. For instance, when all waiting cost functions are linear, the proposed scheduling rule

reduces to the celebrated cµ rule. As another example, when all waiting cost functions are quadratic, the

schedule becomes a queue-ratio rule that strives to maintain various queue lengths at some target ratio.

5.2 The Observed Atypical Pricing Scheme

In this subsection, we provide concrete examples to illustrate our proposed policy. To make things simple,

we consider a single-product MTO system, and we can therefore suppress all the subscripts indicating the

job classes. Customers’ willingness-to-pay follows a logistic distribution G(x) = 1/(1+ e−(x−r)/s), where

r and s are two model parameters representing location and scale, respectively. The demand rate function

is then Ξ(p) = ΛGc(p), where Λ signifies the potential demand arrival rate and Gc(p) := 1−G(p) denotes

the tail probability. The inverse demand rate function is thus Ξ−1(λ) = r + s log((Λ− λ)/λ). We choose

the following model primitives: Λ = 78.327, r = 500, s = 30, c = 200, C = 600, and q = 400. The nominal

demand rate is λ̄ = arg maxλ λ · (Ξ−1(λ)− q) = 50. Production times at both the primary and secondary

servers are exponentially distributed with the rate parameters µ = 42.929 and γ = 14.142, respectively.
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Figures 1(a) and 1(b) illustrate the proposed pricing schemes as a function of the number of pending

jobs in the system when the waiting cost rates are h(x) = x and h(x) = 0.1x2, respectively. To compare with

the optimal control policy, we plot both the pricing policies derived from our DCP and a Markov Decision

Process (MDP) formulation (please refer to EC.4 for details in the MDP formulation). The solid and dashed

lines represent the pricing policies under MDP and DCP, with different colors differentiating whether the

surge capacity is on or off. In particular, the legend “price (base capacity)” indicates the price curve when the

surge capacity is off, whereas “price (surge capacity)” indicates the price curve when the surge capacity is

on. Furthermore, the up-pointing and down-pointing triangles denote the thresholds of switching derived

from the solutions of the MDP and DCP (notice that they are µw∗0 and µw∗1 from the definition of workload

(14)), respectively. One can see that the pricing policy derived from the DCP is very close to their optimal

counterparts and shares the same structure. The performance gap between the two policies will be studied in

Section 6. We can also see that the optimal policies for managing surge capacity are of either the threshold or

static type. This has been proven for the DCP (Theorems 1). However, our extensive numerical experiments

reveal that a solution to an MDP exhibits the same structure, as illustrated in the two figures.
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(b) h(x) = 0.1x2

Figure 1 Dynamic Pricing Schemes and Sequential Switching Rules Derived From MDPs and DCPs

When we compare Figures 1(a) and 1(b), we can see that the quadratic waiting costs tend to result in a

more aggressive pricing strategy: The pricing curves under both base and surge capacities in Figure 1(b)

are steeper than those in Figure 1(a). Additionally, the thresholds for the sequential switching policy in

Figure 1(b) are lower than those shown in Figure 1(a). These findings reinforce our intuition about reducing

waiting costs through dynamic pricing and expanding capacity. When the waiting cost function is quadratic,

the system waiting cost rate grows rapidly with the congestion level, requiring a higher price and lower

thresholds for activating the surge capacity to effectively prevent system congestion levels from growing
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too high. The downward slope of pricing policy with base capacity in Figure 1(b) is much steeper than that

shown in Figure 1(a), implying the system should quickly accumulate backlog and thus spend less time in

states that are congested but not so congested as to justify activating the secondary server.

5.3 Interaction Between Dynamic Pricing and Capacity Management

To explain the atypical structure of the pricing rule, consider the manager’s ideal scenario: rely on the primary

server, set the price at p̄, and maintain a low level of congestion. However, this perfect situation is not

achievable because, with a base capacity that matches nominal demand, stochasticity can often overload

the system, leading to significant waiting costs. To combat congestion, managers have two levers of control:

they can raise the product price to lower the effective arrival rate or activate the secondary server to increase

capacity. However, the existence of the setup cost discourages switching the surge capacity on and off too

frequently, and the higher C is, the less frequently the surge capacity should be activated.

Zooming in on the details, when facing a nontrivial setup cost, the system manager should activate the

secondary server only when the system is heavily congested, which further implies that pricing should be the

main device to adjust demand when the congestion level is low or moderate. When only the base capacity is

operational, the system manager is obliged to offer a higher price to curb demand as the system becomes

more congested. However, since a higher price also implies a higher profit loss, reducing system congestion

by raising prices may become more cost-ineffective as the system congestion level further increases. When

the congestion level falls short but is near the activating threshold, it is a reasonable strategy for the system

manager to lower the price to both reduce profit loss and accumulate enough backlog to make the best use of

the activation of surge capacity. Although lowering the price makes the system even more congested in the

short term, the long-term holding cost would not be too high, provided that the system could accumulate

enough backlog and activate the surge capacity in a brief period of time.

6 Numerical Studies

In this section, we conduct numerical experiments to examine system performance under the proposed policy.

In §6.1, we focus on a single-product system, and we study a two-product system in §6.2.

6.1 Single Product

The basic parameter settings of the single-product systems we study in this subsection are the same as

those described in §5.2. For better illustration, we define z?0 := µw?
0 and z?1 := µw?

1 to indicate the threshold

of switching the secondary server with respect to the number of pending jobs in the system. In §6.1.1,

we numerically study the performance gap of policies derived from the DCP in this paper and a Taylor

series-based DCP (T-DCP) in the literature, compared to the MDP solution. We elaborate on the effect of the

setup cost C on the system in §6.1.2. We next study the effect of the load parameter ψ in §6.1.3. Finally, in

§6.1.4 we show how values of per-unit surge capacity cost c affect the system performance.
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6.1.1 Performance Gap of DCP and T-DCP Compared to MDP

One noteworthy fact in this paper is that we do not use any function approximation techniques to the profit

loss function δ, in contrast to a stream of papers using second-order Taylor expansions as the approximation

to the revenue or profit function (Çelik and Maglaras 2008, Kim and Randhawa 2018, Ata and Barjesteh

2023). More specifically, if ‖λλλ− λ̄λλ‖ is not too large, then

π(λλλ)≈ π̃(λλλ) := π(λ̄λλ)+∇π(λ̄λλ)(λλλ− λ̄λλ)+
1
2
(λλλ− λ̄λλ)T

∇
2
π(λ̄λλ)(λλλ− λ̄λλ).

So it is reasonable to substitute π by π̃ in the objective function. The upside of this approximation is that the

resulting Bellman equation is a Riccati equation, which may be solved explicitly. However, it may cause a

non-negligible error if the actual arrival rates deviate from λ̄λλ too much. We henceforth call the DCP derived

from this second-order Taylor expansion the Taylor series-based DCP (T-DCP).

To study the performance gap of the policies generated by our DCP and T-DCP, we make a comparison of

the system performance under the two policies with the optimal policy computed through an MDP formulation.

The details of how to formulate our problem as an MDP are provided in EC.4. Tables 1 and 2 present the

numerical results, corresponding to the holding cost function h(x) = x and h(x) = 0.1x2, respectively. The

optimal long-run average cost can be derived by solving the MDP, which is denoted as η̄∗ in the tables.

We use η̂DCP and η̂T-DCP to represent the estimated long-run average cost through conducting Monte Carlo

simulation programs using the policies derived from solving the DCP and T-DCP, respectively. The values in

the parentheses indicate 95% confidence levels. “Gap” is defined as (η̂k − η̄∗)/η̂k for k = DCP,T-DCP to

measure the differences between the two policies and the optimal ones.

Table 1 Gaps of DCP and T-DCP Compared to MDP With h(x) = x

MDP DCP T-DCP
C η̄∗ η̂DCP Gap (%) η̂T-DCP Gap (%)
0 100.294 100.159(0.423) -0.14 100.298(0.414) 0.00

200 120.616 120.622(0.408) 0.00 121.075(0.378) 0.38
400 130.028 130.212(0.406) 0.14 130.489(0.389) 0.35
600 136.503 136.855(0.681) 0.26 137.224(0.711) 0.53
800 141.083 141.654(0.695) 0.40 142.652(0.671) 1.10

1,000 144.217 144.559(0.685) 0.24 146.388(0.713) 1.48
“Static Off” 148.319 148.238(0.675) -0.05 149.34(0.624) 0.68
“Static On” 207.348 207.827(0.779) 0.23 207.409(0.808) 0.03

Tables 1 and 2 show that the policy derived from our DCP is indeed near-optimal since the gaps are all

below about 0.5%, under various values of C. In contrast, the performance gap between the T-DCP and MDP

policies enlarges as C increases, and the worst gap is approximately 3% when C = 1,000 with the quadratic

waiting cost function h(x) = 0.1x2. Our numerical results show that solving the DCP without approximating

the profit function can keep the performance gaps extremely small under various scenarios. Notably, gaps
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Table 2 Gaps of DCP and T-DCP Compared to MDP With h(x) = 0.1x2

MDP DCP T-DCP
C η̄∗ η̂DCP Gap (%) η̂T-DCP Gap (%)
0 108.001 107.621(0.417) -0.35 108.141(0.395) 0.13

200 143.942 144.135(0.423) 0.13 144.845(0.396) 0.62
400 160.031 160.161(0.718) 0.08 161.617(0.668) 0.98
600 169.403 169.839(0.629) 0.26 172.341(0.632) 1.70
800 174.1 174.388(0.632) 0.17 178.714(0.705) 2.58

1,000 175.896 176.832(0.693) 0.53 181.394(0.636) 3.03
“Static Off” 176.495 176.509(0.679) 0.01 176.967(0.683) 0.26
“Static On” 209.386 208.669(0.811) -0.34 209.289(0.831) 0.30

should always be non-negative, but due to simulation errors, we may sometimes obtain negative estimated

gaps, and the negative gaps typically imply the performance of the proposed policy is very close to that under

the optimal one.

6.1.2 The Effect of Setup Cost C

We next study the effect of the setup cost parameter C, which is an important feature in our model to study

the surge capacity. The simulation results are reported in Tables 3 and 4 for waiting cost functions h(x) = x

and h(x) = 0.1x2, respectively. We present how the thresholds z?0, z
?
1 and average costs η̂DCP are affected by

various values of C. In addition, the columns “Profit Loss”, “Waiting Cost”, “Surge Capacity Cost”, and

“Setup Cost” report the estimated values of individual cost rates of the first to the last terms in (13), with Zk

replaced by Xk, the state variables in pre-limit systems.

In practice, the setup cost could be related to some physical costs. For example, C can be used to model

the fixed fee component of contractual arrangements with a contract manufacturer that take the form of a

fixed fee plus a variable fee. The setup cost can also be regarded as a system design parameter that prevents

the surge capacity from switching on and off too frequently. Indeed, our formulation is closely related to the

following constrained problem:

minimize lim sup
t→∞

1
t
E
[∫ t

0
δ(ϑϑϑ(u))du+

K

∑
k=1

∫ t

0
hk(Zk(u))du+ c

∫ t

0
Y (u)du

]
, (35)

subject to the constraint

lim sup
t→∞

E
[
∑u≤t [∆Y (u)]+

]
t

≤ υ, (36)

for some constant υ. The constraint (36) requires the long-run average switching frequency of the surge

capacity to be bounded from above by some “budget” υ. This is effectively a constrained Markov decision

process, and our formulation (13) can, in a loose sense, be regarded as a Lagrangian relaxation of the

constrained problem, where C is the Lagrange multiplier. We do not rigorously justify the equivalence

between the constrained and the Lagrangian problems. But we encourage interested readers to refer to the
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Table 3 Numerical Results With h(x) = x

C (z?0, z
?
1) η̂DCP

Profit
Loss

Waiting
Cost

Surge Capacity
Cost

Setup
Cost

Switching
Frequency

0 (19.42, 19.42) 100.159(0.423) 19.876 16.392 63.891 0.000 1.665
200 (6.607, 53.153) 120.622(0.408) 31.755 25.803 51.547 11.517 0.058
400 (5.105, 64.565) 130.212(0.406) 41.815 29.621 43.923 14.852 0.037
600 (4.204, 72.973) 136.855(0.681) 52.604 31.643 36.597 16.012 0.027
800 (3.604, 79.279) 141.654(0.695) 64.682 32.672 29.113 15.188 0.019

1,000 (3.303, 84.985) 144.559(0.685) 77.761 32.629 21.212 12.956 0.013
“Static off” - 148.238(0.675) 119.506 28.733 0 0 0
“Static on” - 207.827(0.779) 0.687 7.14 200 0 0

Table 4 Numerical Results With h(x) = 0.1x2

C (z?0, z
?
1) η̂DCP

Profit
Loss

Waiting
Cost

Surge Capacity
Cost

Setup
Cost

Switching
Frequency

0 (12.514, 12.514) 107.621(0.417) 20.399 17.295 69.927 0 1.935
200 (3.303, 31.231) 144.135(0.423) 38.167 29.364 55.732 20.872 0.104
400 (2.102, 36.937) 160.161(0.718) 59.314 35.102 41.208 24.537 0.061
600 (1.502, 41.141) 169.839(0.629) 85.412 37.672 26.581 20.174 0.034
800 (1.201, 45.345) 174.388(0.632) 111.33 36.952 13.514 12.592 0.016

1,000 (0.901, 49.249) 176.832(0.693) 130.749 35.114 5.447 5.521 0.006
“Static off” - 176.509(0.679) 143.945 32.564 0 0 0
“Static on” - 208.669(0.811) 0.429 8.24 200 0 0

textbook by Altman (1999); see also Chai et al. (2023) and the references therein for the relevant problems

developed in the same vein.

We emphasize that if the system manager has a budget for the cost associated with the switching frequency

of the surge capacity, it can be achieved by carefully fine-tuning the parameter C. A higher value of C implies

a higher penalty cost per switch and hence discourages switching on and off the surge capacity too frequently,

while a lower value of C would stimulate switches. We corroborate the above intuition through simulation

programs summarized in the “Switching Frequency” columns in both Tables 3 and 4. One noteworthy result

is that the switching frequency becomes prohibitively high when the setup cost is zero. For example, our

results in Table 4 show that the optimal policy requires the system to switch on and off the surge capacity

nearly twice a day when C = 0 and h(x) = 0.1x2. This may not be a viable policy for some manufacturing

systems, especially those that require extra efforts during each capacity expansion, such as staffing, training,

etc. To make a comparison, under the linear waiting cost, if C = 600, then the switching frequency is only

0.027 and 1/0.027≈ 37, so that on average the system only activates the secondary server once per 37 days.

Tables 3 and 4 also provide insights on how the individual costs are affected by C. We notice that both the

profit loss and waiting cost increase in C, but the surge capacity cost decreases in C. This result is intuitive

because a higher penalty leads to a lower frequency of switching, which makes the system less flexible to

reduce waiting costs through dynamic capacity adjustment and hence more reliable on pricing control. Less

flexibility also encourages the manager to be less reliant on the surge capacity, so its usage also decreases.
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Finally, our numerical results show the setup cost may not be a monotone function with respect to C, as it is

a product of C and a term (switching frequency) decreasing in C.

6.1.3 The Effect of Load Parameter ψ

We next investigate how the load parameter ψ affects the system performance by fixing C = 600 and keeping

other parameters unchanged. Table 5 summarizes the numerical results as we vary ψ changes from 0 to

−0.39. We focus on the critically loaded and overloaded regimes because only in these regimes does surge

capacity play an important role in reducing waiting costs.

Table 5 The Effect of Load Parameter ψ With h(x) = x

ψ (z?0, z
?
1) η̄ η̂DCP Gap Profit

Loss
Waiting

Cost
Surge Capacity

Cost
Setup
Cost

Switching
Frequency

0 “Static Off” 27.719 27.876(0.174) 0.56 9.213 18.663 0 0 0
-0.08 (12.913, 88.589) 69.05 68.98(0.367) -0.10 40.9 25.276 1.808 0.996 0.002
-0.16 (4.204, 72.973) 136.503 136.855(0.681) 0.26 52.604 31.643 36.597 16.012 0.027
-0.27 (1.201, 70.871) 196.867 196.601(0.744) -0.14 29.169 36.903 103.739 26.79 0.045
-0.39 “Static On” 228.24 227.871(0.759) -0.16 9.153 18.717 200 0 0

We can see from Table 5 that the nominal traffic intensity has a great impact on the average cost, where as

ψ decreases from 0 to −0.39, η̂DCP has more than eightfold increase from about 28 to about 228. In addition,

as the nominal traffic intensity increases, the capacity adjustment strategy changes from “Static Off” to

dynamic adjustment and finally to “Static On”. We also see that the long-run average profit loss, waiting

cost, and setup cost are all non-monotonic functions in ψ, whereas the surge capacity cost grows rapidly as

ψ decreases.

6.1.4 The Effect of Per-Unit Surge Capacity Cost c

The parameter c measures how expensive it is to continuously use the surge capacity. Intuitively speaking,

for any fixed setup cost C, we expect that the system should have a “Static On” policy if c is too small and a

“Static Off” policy if c is too large. We expect a dynamic capacity adjustment strategy to arise when c is in

some middle range, an intuition which we verify through the numerical examination in Table 6, where we

vary c from 50 to 400.

Table 6 The Effect of Per-Unit Surge Capacity Cost c With h(x) = x

c (z?0, z
?
1) η̄ η̂DCP Gap (%) Profit

Loss
Waiting

Cost
Surge Capacity

Cost
Setup
Cost

Switching
Frequency

50 “Static On” 57.348 57.494(0.388) 0.25 0.35 7.144 50 0 0
100 “Static On” 107.348 107.314(0.823) -0.03 0.166 7.147 100 0 0
200 (4.204, 72.973) 136.503 137.091(0.756) 0.43 52.824 31.639 36.59 16.039 0.027
300 (10.511, 80.781) 146.784 147.022(0.665) 0.16 99.606 29.824 13.073 4.518 0.008
400 “Static Off” 148.28 148.077(0.654) -0.14 119.36 28.717 0 0 0
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By comparing the numerical results in the first two rows when c = 50,100 and the rest of the data in

Table 6, we see an interesting implication indicated by negligible profit loss and unchanged waiting cost:

Pricing policy keeps at a nearly static optimal level when c is relatively small. In other words, the system

behaves like an M/M/2 queue for a range of c being small. If, however, c increases beyond this range but

is not too large, the manager should combine dynamic pricing and dynamic capacity adjustment to restrict

waiting costs. Furthermore, when c becomes too large, the manager relies more on pricing as we see the

profit loss increase and eventually solely uses dynamic pricing while keeping the secondary server off. This

result again shows the intricate interaction between dynamic pricing and the setup cost of surge capacity.

6.2 Two Products

In this subsection, we study a two-product MTO system to illustrate the performance of our model in

multi-product settings. §6.2.1 illustrates the structure of the pricing rule under a multinomial logit model in a

multi-product setting. In §6.2.2, we study the effect of price sensitivity on system performance.

6.2.1 Pricing Structure

We now consider an MTO manufacturer offering two products, indexed by k = 1,2, with the price vector

ppp. Following the literature, we assume the probability of purchasing product k follows a multinomial logit

model, such that

P (purchase k|ppp) = eUk

1+∑
2
k=1 eUk

,

where Uk := b0
k − b1

k pk for some model primitives b0
k,b

1
k . Then we have the demand rate function Ξk(ppp) =

ΛP (purchase k|ppp) where we recall that Λ denotes the arrival rate of potential customers. Through some

algebraic manipulation, we can derive the inverse demand rate function

Ξ
−1
k (ppp) =− 1

b1
k

log
(

λk

Λ−∑
2
k=1 λk

)
+

b0
k

b1
k
, for k = 1,2.

We set the basic parameters as follows: Λ = 75, q1 = q2 = 400, c = 200, C = 600, ψ̂ = −1, γ̂ = 2,

b0
1 = b0

2 = 15, and b1
1 = b1

2 = 0.03. The nominal demand rate can be calculated as λ̄λλ = (25,25) through

a gradient ascent method. Assuming the production rates of the two products are identical, then we can

derive the service rates of the primary server µµµ = (43.8,43.8) by (6), and γγγ = (12.39,12.39) by (8). The

waiting cost functions are assumed to be h1(x) = x and h2(x) = 1.2x. It is worth mentioning that based on

our assumption on the waiting cost functions, by (34) we have x?1(W (t)) = µ1W (t) and x?2(W (t)) = 0 such

that the scheduling rule is to always give priority to class 2 products.

Based on our model parameter settings, we can see that the profit rate π is a symmetric function with

respect to demand rates λ1 and λ2, which implies the optimal demand rates and hence the optimal pricing

rule from the DCP should be the same for products 1 and 2. Being aware of this, we only plot the pricing
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schemes of class 1 products in Figures 2 and 3, corresponding to the pricing decisions with surge capacity

off and on, respectively. In addition, the panels 2(a) and 3(a) present the pricing curves, where the x- and

y-axis represent the number of pending requests for products of class 1 and 2 in the system, respectively. For

better illustration on pricing, panels 2(b) and 3(b) present two-dimensional color plots with brighter colors

representing higher values.

(a) Pricing curve (b) Pricing colormap

Figure 2 Pricing Schemes of Class 1 with Base Capacity

(a) Pricing curve (b) Pricing colormap

Figure 3 Pricing Schemes of Class 1 with Surge Capacity

We can see from Figures 2 and 3 that the pricing rule shares a similar structure as that depicted by Figure 1:

When the surge capacity is off, the proposed pricing policy first increases and then decreases with respect
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to the congestion level; but when the surge capacity is on, the proposed pricing policy is monotonically

increasing with respect to the congestion level. Furthermore, it is easy to see from the panels 2(b) and 3(b)

that the product-specific pricing schemes are structurally the same along all lines parallel to a diagonal line.

This is because we derive the pricing rule based on the system workload, which is a weighted sum of pending

jobs from all the classes.

6.2.2 Effect of Price Sensitivity Between the Two Products

We now study how the price sensitivity between the two products affects the system performance. To this

end, we keep all basic parameters fixed, but vary b1
2 from 0.03 to 0.034. Notice that by changing the demand

function, we need to recalculate λ̄λλ, µµµ and γγγ accordingly. The numerical results are shown in Table 7.

Table 7 The Effect of Different Price Sensitivity Across Two Products

b1
2 (w?

0,w
?
1) η̂DCP η̂T-DCP

Profit
Loss

Waiting
Cost

Surge Capacity
Cost

Setup
Cost

Switching
Frequency

0.03 (0.115, 1.672) 137.752(0.852) 138.123(0.827) 47.471 33.186 41.22 15.876 0.026
0.031 (0.13, 1.712) 131.712(0.756) 132.565(0.769) 52.576 31.927 33.856 13.354 0.022
0.032 (0.14, 1.747) 128.306(0.707) 128.904(0.759) 59.263 30.73 27.272 11.041 0.018
0.033 (0.155, 1.782) 123.905(0.709) 125.295(0.725) 61.735 29.918 22.779 9.473 0.016
0.034 (0.16, 1.812) 122.153(0.677) 122.128(0.724) 65.438 29.494 19.253 7.969 0.013

By comparing the columns “η̂DCP” and “η̂T-DCP” of Table 7, we first find that the policies derived from our

DCP outperform the ones derived from the T-DCP in multi-product scenarios. Table 7 also shows that the

long-run average cost η̂DCP decreases as the customers become more price-sensitive to the product 2. This is

because when customers are more price-sensitive, to achieve the same demand rates, the manager needs to

set a lower price compared to the case of less price-sensitive customers, which leads to the higher profit rate

loss. Moreover, as customers become more price-sensitive, the system manager should rely more on dynamic

pricing and less on surge capacity, as suggested by the results in the columns “Profit Loss”, “Surge Capacity

Cost”, and “Setup Cost”. The less dependency on the surge capacity also implies the switching frequency

should decrease in price sensitivity, as expected in the simulation results shown in the last column of Table 7.

7 Concluding Remarks

Maintaining capacity flexibility can be a cost-effective option for manufacturers who produce MTO products

to meet the fluctuating demand of their customers. However, adjusting capacity levels while making pricing

decisions is a challenging task. This paper introduces a formal stochastic control framework that jointly

considers capacity adjustment with a setup cost and dynamic pricing, which, to the best of our knowledge, has

not been done before. We present a nearly explicit joint capacity adjustment and pricing strategy that depends

on the congestion level in the system. Capacity adjustments follow a switching strategy that determines

when to use surge capacity and when to shut it down, based on a set of switching boundaries. We have also
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observed an unusual non-monotonic feature for the pricing rule, which highlights the complex interplay

between the two control levers. In particular, if the setup cost associated with the secondary server is not too

high, when the congestion level goes from low to moderate, the manager should increase the price. However,

if the congestion keeps rising, it may be wise to decrease price and then consider activating the secondary

server if the backlogged demand approaches a critically high level. Further, as a rule of thumb, the manager

should use dynamic pricing rather than surge capacity as a lever when the customers are price-sensitive.
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E-Companion

EC.1 Proofs of Main Results

Proof of Proposition 1. To prove Proposition 1, we need the following auxiliary lemmas:

LEMMA EC.1. If η1 < η2, then f0(w,η1)< f0(w,η2) for all w∈ (0,wη1,∞ ∧wη2,∞).

LEMMA EC.2. Let L0 := {η > 0 : ∃w∈ (0,wη,∞), f ′0(w,η)< 0}. If η ∈ L0, then f0(w,η) is quasi-concave

and limw→wη,∞ f0(w,η) =−∞. In addition, L0 is nonempty.

LEMMA EC.3. The set U0 := {η > 0 : η /∈L0} is nonempty.

LEMMA EC.4. Let η0 := sup L0. Then η0 ∈U0, and f ′0(w,η0)≥ 0 for all w≥ 0.

LEMMA EC.5. For each η∈L0, f0(w,η)< g−1(2h̄(w)+ a) for some positive constant a.

The proofs of the auxiliary lemmas are postponed to EC.2. Part (i) of Proposition 1 follows directly from

Lemmas EC.1–EC.5.

Next, to prove part (ii) of Proposition 1, we first define a class of functions {ξα(x,η); η∈R} which are

solutions to (28), but with the left boundary conditions ξα(0,η) = α and no restriction to the right boundary

condition. Let wα

η,∞ := inf{w : limx↑w ξα(x,η) =±∞}. We first need Proposition EC.1:

PROPOSITION EC.1. For all w < wα

η,∞ ∧wα

η′,∞, we have ξα(w,η)< ξα(w,η′) if η < η′; in particular, there

exists a unique ηα > 0 such that ξα(w,ηα) grows to infinity at a polynomial rate with wη,∞ = ∞, and

limw→wη,∞ ξα(w,η) =−∞ for any η < ηα.

Let c0 := c− (ψ+ γ̄)α−g(α). Analogously, the proof of Proposition EC.1 relies on the following lemmas:

LEMMA EC.6. If η1 < η2, then ξα(w,η1)< ξα(w,η2) for all w∈ (0,wα

η1,∞
∧wα

η2,∞
).

LEMMA EC.7. Let Lα :=
{

η > c0 : ∃w∈ (0,wα

η,∞), ξ′
α
(w,η)< 0

}
. If η∈Lα, ξα(w,η) is quasi-concave and

limw→wα
η,∞

ξα(w,η) =−∞. In addition, Lα is nonempty.

LEMMA EC.8. The set Uα :=
{

η > c0 : η /∈Lα

η

}
is nonempty.

LEMMA EC.9. Let ηα := sup Lα. Then ηα ∈Uα, and ξ′
α
(w,ηα)≥ 0 for all w≥ 0.

LEMMA EC.10. For each η∈Lα, ξα(w,η)< g−1(2h̄(w)+ a) for some positive constant a.

In the sequel, we denote ηα as η(α) (with a little abuse of notation) to stress that η(α) is a function of α.

We next show that η(α) is a strictly decreasing and continuous function of α.

LEMMA EC.11. If α1 > α2, then η(α1)< η(α2) and ξα1(w,η(α1))> ξα2(w,η(α2)). In addition, η(·) is a

continuous mapping and η(α)→−∞ as α→∞.

From Lemma EC.11, the inverse function η−1(·) is well defined. Let f1(w,η) = ξη−1(η)(w,η). We know

from Proposition EC.1 that f1(w,η) corresponds to the desired class of functions in part (ii). Thus, the proof

of the Proposition 1 is now complete. �
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Proof of Lemma 1. To begin with, we observe that the two functions f0(·, η̄) and f1(·, η̄) will touch at either

w = 0 or w = ∞. On the other hand, f1(w,0)> 0 for any w ∈ [0,∞] and f0(w,0)≤ 0 for any w ∈ [0,w0,∞),

which implies that f1(w,0)− f0(w,0) > 0 for any w ∈ [0,w0,∞). Moreover, by Proposition 1, for any w,

f0(w,η) is increasing in η and f1(w,η) is decreasing in η. Therefore, there exists some
¯
η∈ (0, η̄] such that

for any η <
¯
η, f0(·,η) and f1(·,η) do not intersect, and for η =

¯
η, f0(·,η) and f1(·,η) intersect but do not

cross each other, and for any η ∈ (
¯
η, η̄), f0(·,η) and f1(·,η) cross at least twice. In the remainder of the

proof, we will write f0 and f1 in place of f0(·,η) and f1(·,η), respectively, and let f̃ := f0− f1. We intend to

argue that f0 and f1 can cross at most twice for any η∈ (
¯
η, η̄).

Suppose, by way of contradiction, that the two functions cross more than twice. Then f̃ must have crossed

the horizontal line y = 0 at least four times, two times from below and two times from above. On the other

hand, from (27) and (28) it follows that

f̃ ′(w) =
2
σ2

[c− γ̄ f1(w)] for all w such that f̃ (w) = 0. (EC.1)

However, by Proposition 1, we know that f1 is strictly increasing on [0,∞) for all η≤ η1. This implies that

f̃ (w) can cross the horizontal line y = 0 at most twice thanks to (EC.1), leading to a contradiction. Therefore,

f0 and f1 can cross at most twice for any η∈ (
¯
η, η̄). The proof is thus complete. �

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. We first prove (i). For any η ∈ (
¯
η, η̄), by Lemma 1, the functions f0 and f1 cross

at two points. Let w0(η) < w1(η) denote two points where the functions f0 and f1 cross. When η→
¯
η,

w1(η)−w0(η)→ 0 and
∫ w1(η)

w0(η)
[ f0(w,η)− f1(w,η)]dz→ 0. When η = η̄, w0(η) = w̄0 and w1(η) = w̄1. By

Proposition 1, for any w, f1(w,η) is decreasing in η and f0(w,η) is increasing in η. Therefore, w0(η) is

decreasing in η and w1(η) is increasing in η. As a result,
∫ w1(η)

w0(η)
[ f0(w,η)− f1(w,η)]dz is increasing in η.

Hence, as η increases from
¯
η to η̄,

∫ w1(η)
w0(η)

[ f0(w,η)− f1(w,η)]dz increases from 0 to C̄ =
∫ w̄1

w̄0
[ f0(w, η̄)−

f1(w, η̄)]dz, which is greater than C by our assumption. Hence, we conclude that there exists some η? ∈ (
¯
η, η̄)

such that
∫ w1(η

?)

w0(η?) [ f0(w,η?)− f1(w,η?)]dz = C. Denoting w?
0 = w0(η

?) and w?
1 = w1(η

?), we complete the

proof of (i).

Next, let us prove (ii). We use a verification argument consisting of two steps.

Verification Argument: Step 1.

Let v be such that (a) vw(0,w) = f0(w,η?) on [0,w?
1) and vw(0,w) = f1(w,η?) on [w?

1,∞), (b) vw(1,w) =

f0(w,η?) on [0,w?
0] and vw(0,w) = f1(w,η?) on (w?

0,∞), and (c) v(0,w?
0) = v(1,w?

0). Then, for any y ∈
{0,1}, v(y,w) is a twice continuously differentiable function on [0,∞) except at w?

0 and w?
1. Define K =

R+\{w?
0,w

?
1}. It is easy to verify that this function v(y,w) satisfies (22)–(26) and thus is a solution of

Equation (20) when w∈K . Then for any w∈K and y∈ {0,1},

σ2

2
vww(y,w)− (ψ+ γ̄y) vw(y,w)− g(vw(y,w))+ h̄(w)+ cy≥ η

?, (EC.2)
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and

0≤ v(0,w)− v(1,w)≤C, (EC.3)

with vw(y,0) = 0 and vw(y,w) grows polynomially in w as w→∞.

Note that based on our construction, vw(y, ·) is continuously differentiable on R+ \ {w?
0,w

?
1}. Since the

occupation time of Itô processes at any single point is zero, we can arbitrarily assign value to vww(y,w) on

{w?
0,w

?
1} for calculus computation and the result will not be changed (see e.g. § 3.6 of Karatzas and Shreve

(1991)). Hence, in the rest of this section, we shall stipulate vww(y,w) as its right limit, i.e., vww(y,w) =

limh→0+(vw(y,w+ h)− vw(y,w))/h. Then, by applying the Itô’s formula and taking expectations, we get

E[v(Y (t),W (t))]− v(Y (0),W (0))

=−ψE
[∫ t

0
vw(Y (u),W (u))du

]
−E

[∫ t

0
mmmT

ϑϑϑ(u)vw(Y (u),W (u))du
]

− γ̄E
[∫ t

0
Y (u)vw(Y (u),W (u))du

]
+

σ2

2
E
[∫ t

0
vww(Y (u),W (u))du

]
+E [vw(Y (t),0)L(t)]+E

[
∑u≤t

∆v(Y (u),W (u))
]
,

(EC.4)

where we used

σE
[∫ t

0
vw(Y (u),W (u))dB(u)

]
= 0,

which holds since vw(y,w) has at most polynomial growth in w and by Lemma EC.12 part (ii)

E
[∫ t

0
(W (u))kdu

]
< ∞,

for any k ∈ N. Since vw(y,0) = 0, we have E[vw(Y (t),0)L(t)] = 0. Moreover, the definition g(x) =

sup
ϑϑϑ
{xmmmT ϑϑϑ− δ(ϑϑϑ)} and (EC.2) imply that

−ψE
[∫ t

0
vw(Y (u),W (u))du

]
−E

[∫ t

0
mmmT

ϑϑϑ(u)vw(Y (u),W (u))du
]

− γ̄E
[∫ t

0
Y (u)vw(Y (u),W (u))du

]
+

σ2

2
E
[∫ t

0
vww(Y (u),W (u))du

]
≥−ψE

[∫ t

0
vw(Y (u),W (u))du

]
−E

[∫ t

0
g (vw(Y (u),W (u)))du

]
−E

[∫ t

0
δ(ϑϑϑ(u))du

]
− γ̄E

[∫ t

0
Y (u)vw(Y (u),W (u))du

]
+

σ2

2
E
[∫ t

0
vww(Y (u),W (u))du

]
≥ η

?t −E
[∫ t

0
δ(ϑϑϑ(u))du

]
−E

[∫ t

0
h̄(W (u))du

]
− cE

[∫ t

0
Y (u)du

]
,

and (EC.3) implies that

E
[
∑u≤t

∆v (Y (u),W (u))
]
≥−E

[
C ∑u≤t

[∆Y (u)]+
]
.

Hence, we have

E [v (Y (t),W (t))]− v(Y (0),W (0))

≥ η
?t −E

[∫ t

0
δ(ϑϑϑ(u))du

]
−E

[∫ t

0
h̄(W (u))du

]
− cE

[∫ t

0
Y (u)du

]
−E

[
C ∑u≤t

[∆Y (u)]+
]
.

(EC.5)

To proceed, we need the following Lemma.
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LEMMA EC.12. Regardless of the choice of Y , we have (i) lim supt→∞
E [(W (t))k]< ∞ for any k > 0; (ii)

for any k, t > 0, E
[∫ t

0(W (s))kds
]
< ∞.

To ease the flow of ideas, we defer the proof of this lemma to the end. Next, we divide both sides of (EC.5)

by t, send t→∞, and then appeal to Lemma EC.12 part(i) plus the fact that vw(y,w) has at most polynomial

growth, to get that for any admissible strategy Y ,

lim sup
t→∞

1
t
E

[∫ t

0
δ(ϑϑϑ(u))du+

∫ t

0
h̄(W (u))du+ c

∫ t

0
Y (u)du+C ∑

u≤t

[∆Y (u)]+
]
≥ η

?.

Verification Argument: Step 2. Next, we will show that for Y ?, W ? and optimal pricing ϑϑϑ
?, we have

lim sup
t→∞

1
t
E

[∫ t

0
δ(ϑϑϑ?(u))du+

∫ t

0
h̄(W ?(u))du+ c

∫ t

0
Y ?(u)du+C ∑

u≤t

[∆Y ?(u)]+
]
= η

?.

Following the same procedures as in Step 1, (i.e., applying the generalized Itô’s formula for non-smooth

function, making substitutions to the term with local time, and taking expectations), we get

E[v(Y ?(t),W ?(t))]− v(Y (0),W (0))

=−ψE
[∫ t

0
vw(Y ?(u),W ?(u))du

]
−E

[∫ t

0
mmmT

ϑϑϑ
?(u)vw(Y ?(u),W ?(u))du

]
− γ̄E

[∫ t

0
Y ?(u)vw(Y ?(u),W ?(u))du

]
+

σ2

2
E
[∫ t

0
vww(Y ?(u),W ?(u))du

]
+E

[
∑u≤t

∆v(Y ?(u),W ?(u))
]

=−ψE
[∫ t

0
vw(Y ?(u),W ?(u))du

]
−E

[∫ t

0
g (vw(Y ?(u),W ?(u)))du

]
−E

[∫ t

0
δ(ϑϑϑ?(u))du

]
− γ̄E

[∫ t

0
Y ?(u)vw(Y ?(u),W ?(u))du

]
+

σ2

2
E
[∫ t

0
vww(Y ?(u),W ?(u))du

]
+E

[
∑u≤t

∆v(Y ?(u),W ?(u))
]
,

where we used the definition of the optimal pricing strategy ϑϑϑ
?(u) such that g(vw(Y ?(u),W ?(u))) =

vw(Y ?(u),W ?(u))mmmT ϑϑϑ
?(u)− δ(ϑϑϑ?(u)) and

σE
[∫ t

0
vw(Y ?(u),W ?(u))dB(u)

]
= 0,

which holds since vw(y,w) has at most polynomial growth in w and by Lemma EC.12 part (ii)

E
[∫ t

0
(W ?(u))kdu

]
< ∞,

for any k ∈N, and E[vw(Y ?(t),0)L(t)] = 0 since vw(y,0) = 0. We can verify that

E[v(Y ?(t),W ?(t))]− v(Y (0),W (0))

= η
?t −E

[∫ t

0
δ(ϑϑϑ?(u))du

]
−E

[∫ t

0
h̄(W ?(u))du

]
− cE

[∫ t

0
Y ?(u)du

]
−E

[
C ∑u≤t

[∆Y ?(u)]+
]
.
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If we divide both hand sides of the above equation by t and let t go to infinity, we obtain the desired result by

appealing to Lemma EC.12 part (i) and the fact that vw(y,w) has at most polynomial growth. This completes

the proof of (ii).

Finally, let us prove (iii). Suppose that C≥ C̄. Let vw(0,w) = f0(w, η̄) on [0, w̄1) and vw(0,w) = f1(w, η̄)

on [w̄1,∞). Also, let vw(1,w) = f0(w, η̄) on [0, w̄0], and vw(0,w) = f1(w, η̄) on (w̄0,∞). For any y ∈ {0,1},

v(y,w) is a twice continuously differentiable function on [0,∞) except at w̄0 and w̄1. By writing vy(w) =

v(y,w), we have

σ2

2
v′′0(w)−ψv′0(w)− g(v′0(w))+ h̄(w) = η̄ for w∈ [0, w̄1), (EC.6)

σ2

2
v′′1(w)− (ψ+ γ̄)v′1(w)− g(v′1(w))+ h̄(w)+ c = η̄ for w > w̄0. (EC.7)

In addition,

v0(w) = v1(w) for 0≤w≤ w̄0, and v0(w) = v1(w)+ C̄ for w≥ w̄1, (EC.8)

subject to the boundary conditions v′0(0) = 0, and v′1(w) grows polynomially in w as w→∞, as well as a set

of optimality conditions: v′0(w̄0) = v′1(w̄0) and v′0(w̄1) = v′1(w̄1). Then for any w 6= w̄0, w̄1 and y∈ {0,1},

we have

σ2

2
vww(y,w)− (ψ+ γ̄y) vw(y,w)− g (vw(y,w))+ h̄(w)+ cy≥ η̄, (EC.9)

and

0≤ v(0,w)− v(1,w) = C̄≤C, (EC.10)

with vw(y,0) = 0 and vw(y,w) grows polynomially in w as w→∞. By adapting the same argument as in Step

1 of the Verification Argument, we obtain

lim sup
t→∞

1
t
E

[∫ t

0
δ(ϑϑϑ(u))du+

∫ t

0
h̄(W (u))du+ c

∫ t

0
Y (u)du+C ∑

u≤t

[∆Y (u)]+
]
≥ η̄ = min(η0,η1).

The above inequality becomes an equality by using the S0 strategy (Y ≡ 0) or S1 strategy (Y ≡ 1) depending

on whether η0 ≤ η1 or η0 > η1. This completes the proof of (iii). �

Proof of Theorem 2. The proof of Theorem 2 departs from that of Theorem 1 mainly because the

lower threshold for the approximating diffusion process W (t) is changed from 0 to −b. So the boundary

conditions need to be modified accordingly. Despite this departure, the proofs of the two theorems are largely

identical, except that we need to make two non-trivial modifications, one on Lemma EC.2 and the other on

Lemma EC.12.

The following lemma extends Lemma EC.2 that is essential for proving Proposition 1.
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LEMMA EC.13. Let L0 := {η > 0 : ∃w∈ (−b,wη,∞), f ′0(w,η)< 0}. If η ∈ L0, then f0(w,η) is quasi-

concave and limw→wη,∞ f0(w,η) =−∞. In addition, L0 is nonempty.

The proof of Lemma EC.13 is much more sophisticated than the proof of Lemma EC.2 due to the fact

that the waiting cost function h̄(x) is no longer monotonically increasing everywhere. Indeed, h̄(x) is strictly

decreasing in negative x. We will provide the proof of Lemma EC.13 in §EC.2.

Next, to show Theorem 2, since the approximating diffusion process W (t) can take negative values, we

need the following modification of Lemma EC.12:

LEMMA EC.14. Regardless of the choice of Y , we have (i) lim supt→∞
E [|W (t)|k]< ∞ for any k > 0; (ii) for

any k, t > 0, E
[∫ t

0 |W (s)|kds
]
< ∞.

The proof of Lemma EC.14 is more involved than the proof of Lemma EC.12 due to the fact that the Z

process can take negative values. We will provide the proof of Lemma EC.14 in §EC.2.

The rest of the proof of Theorem 2 follows similarly from the proof of Theorem 1. �

EC.2 Proofs of Auxiliary Lemmas

Proof of Lemma EC.1. Since g(·) is a locally Lipschitz continuous function (by our hypothesis), there

exists a continuous function f0(·,η) satisfying (27) on [0,wη,∞) for each η∈R. If η1 < η2, then f ′0(0,η1)<

f ′0(0,η2). Hence, there exists some w > 0 such that f0(w,η1) < f0(w,η2). Then the lemma follows by

applying the standard comparison theorem of ordinary differential equations. �

Proof of Lemma EC.2. Assume η∈L0 and f0(w,η) exists. To prove f0(w,η) is quasi-concave, we need to

show there exists only one local maximum point w0 such that f0(w0,η)≥ f0(w,η) for all w∈ [0,wη,∞) and

η∈L0.

Let w0 := inf{w > 0 : f ′0(w,η)< 0}. Then f ′0(w0,η) = 0, and f0(w0,η)≥ f0(w,η) for all w ∈ (0,w0). In

addition, there exists some ε > 0 such that f ′0(w,η)< 0 and f0(w,η)< f0(w0,η) on (w0,w0 + ε). We claim

for all w ∈ (w0,wη,∞), f ′0(w,η)≤ 0 and f0(w,η)< f0(w0,η). Assume by contradiction that this is not true,

then there exists some w1 > w0 such that f ′0(w1,η)> 0 and f0(w1,η)< f0(w0,η). We can deduce there exists

w̄0 ∈ (w0,w1) such that f0(w̄0,η) = f0(w1,η), f ′0(w̄0,η)≤ 0. We have

σ2

2
( f ′0(w̄0,η)− f ′0(w1,η)) =−

(
h̄(w̄0)− h̄(w1)

)
,

which is a contradiction, because the left-hand side is strictly negative but the right-hand side is non-negative.

Next, we prove limw→wη,∞ f0(w,η) = −∞. If wη,∞ < ∞, due to f ′0(w,η) ≤ 0 for all w ∈ (w0,wη,∞),

limw→wη,∞ f0(w,η) = −∞. If, on the other hand, wη,∞ = ∞, assume limw→∞ f0(w,η) = l > −∞. We have

limw→∞ f ′0(w,η) = 0, so limw→∞ h̄(w) = η+ψl− g(l), which is a contradiction since the left-hand side is ∞

but the right-hand side is finite.
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Finally, to prove L0 6= /0, we first notice that for all η < 0, f ′0(0,η)< 0. Based on the above arguments,

we have f0(w,η) < 0, f ′0(w,η) ≤ 0 for all w ∈ (0,wη,∞) and limw→∞ f0(w,η) = −∞. By the continuity of

f0(w,η) with respect to η, we have f0(w,0) = limη↑0 f0(w,η) ≤ 0 and f ′0(w,0) = limη↑0 f ′0(w,η) ≤ 0. But

since f0(w,0)≡ 0 is not possible, there must exist some w1 > 0 such that f0(w1,0)< 0. Using the continuity

of f0(w,η) with respect to η again, we know that there exists some η1 > 0 such that f0(w1,η1)< 0. Hence,

there exists some w∈ (0,w1) such that f ′0(w,η1)< 0, so η1 ∈L0. �

Proof of Lemma EC.3. Assume by contradiction that U0 = /0. Then for all η > 0, by Lemma EC.2

limw→wη,∞ f0(w,η) =−∞.

To proceed, we first claim the set defined as Ū(w, y) := {η : f0(w,η)≥ y} is nonempty for any w≥ 1, y≥ 0.

Since g(x)≥ 0, we have

f ′0(w,η)≥
2
σ2

(
η+ψ f0(w,η)− h̄(w)

)
,

f0(w,η)≥
2
σ2

e
2ψ

σ2

∫ w

0
e−

2ψ

σ2
(
η− h̄(x)

)
dx.

So, given w, the right-hand side could be larger than any y if η is sufficiently large. Let η̄(w, y) := inf Ū(w, y).

By the super-linear growth assumption of function g(·), we have g(x) > lx for any l ∈ R when x is

sufficiently large. In particular, if we let l =−ψ+ 1, then there exists some x̄ such that g(x)> (−ψ+ 1)x for

all x≥ x̄. Let η = η̄(1, x̄), then we have g( f0(1,η))+ψ f0(1,η)> f0(1,η).

Hence, we can deduce

f ′0(1,η)>
2
σ2

(
f0(1,η)− h̄(1)+η

)
,

which suggests there exists w̄(w̄ could be ∞) such that f0(w,η) ≥ x̄ on (1, w̄). We also have f ′0(w,η) >
2

σ2

(
f0(w,η)− h̄(w)+η

)
on (1, w̄). Next, for any w∈ (1, w̄), we have

f0(w,η)≥ f0(1,η)+
2
σ2

e
2

σ2 w
∫ w

1
e−

2
σ2 x (−h̄(x)+η

)
dx

= f0(1,η)+η

(
e

2
σ2 (w−1)− 1

)
− 2

σ2
e

2
σ2 w

∫ w

1
e−

2
σ2 xh̄(x)dx.

By the polynomial growth of h̄(·), we have h̄(x)≤ Axk +B for some constants A,B∈R+ and some integer

k > 0 for all x > 0. Then, we have

f0(w,η)> f0(1,η)+η

(
e

2
σ2 (w−1)− 1

)
− 2

σ2
e

2
σ2 w

∫ w

1
e−

2
σ2 x

(Axk +B)dx

> f0(1,η)+η

(
e

2
σ2 (w−1)− 1

)
− 2

σ2
e

2
σ2 w

∫
∞

1
e−

2
σ2 x

(Axk +B)dx

= f0(1,η)+
(

η

e
2

σ2
−M

)
e

2
σ2 w−η,

where M is some constant. Then there exists some η such that η

e
2

σ2
−M > 0 and

(
η

e
2

σ2
−M

)
e

2
σ2 w−η > 0.

Denoting an arbitrary such η satisfying the inequality as η̂, and let η = max{η̂, η̄(1, x̄)}, we have f0(w,η)>
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f0(1,η) on (1, w̄). Also, f0(w,η) is greater than a strictly increasing function on (1, w̄). By the continuity of f0,

this suggests f0(w,η)> f0(1,η) for all 1≤w≤wη,∞. However, this contradicts to limw→wη,∞ f0(w,η) =−∞.

Hence we conclude that η∈U0. �

Proof of Lemma EC.4. By contradiction, if η0 ∈L0, then limw→wη0 ,∞
f0(w,η0) =−∞. Hence, there exists

some w0 > 0 such that f0(w0,η0)< 0. By the continuity of f0(w,η) with respect to η, there exists ε > 0 such

that f0(w0,η0 + ε)< 0, which contradicts the definition of η0. Therefore, η0 ∈U0. We can also deduce that

η0 = inf U0.

Next, by definition of U0, f ′0(w,η0)≥ 0 for all w∈ (0,wη0,∞). We prove wη0,∞ = ∞. Assume by contradic-

tion wη0,∞ < ∞. Then for any number a∈R, there exists some w such that f0(w,η0)> a. By the continuity of

f0(w,η) with respect to η, there exists ε > 0 such that f0(w,η− ε)> a. Next, by the similar arguments as in

the proof of Lemma EC.3, we can deduce that f0(w,η− ε) is greater than some strictly increasing function,

which suggests η− ε∈U0. However, this contradicts to the definition of U0, so we conclude wη0,∞ = ∞. �

Proof of Lemma EC.5. For clarity, we will assume in this proof that ψ = 0. The case for ψ 6= 0 can be

proven in a similar manner, albeit with cumbersome notation. To start, for some w̃ > 0, let a > 0 be such that

(2/σ
2)g′(w̃)(h̄(w)+ a)− 2h̄′(w)> 0. (EC.11)

Note that the existence of such a constant a is ensured by Assumption 1. Notice that h̄ may not be differentiable

at some w. In that case, we can integrate (EC.11) and start from the inequality in the integral form to reach

the same results. Define ϕη(w) := g( f0(w,η)) − 2h̄(w) − a, where the value of a will be defined more

clearly in (EC.12). Now, let ŵη be such that f0(ŵη,η) = supw≥0 f0(w,η). Since f ′0(ŵη,η) = 0, we know that

g( f0(ŵη,η))− h̄(ŵη) =−η < 0. Hence, ϕη(ŵη)<−h̄(ŵη)− a≤ 0. Next, we argue that ϕη(w)≤ 0 for all

w ∈ [0, ŵη]. Suppose this is not true. Then there must exist some w
η

and w̄η with 0 < w
η
< w̄η < ŵη such

that ϕη(wη
) = ϕη(w̄η) = 0, and ϕη(w) > 0 for all w ∈ (w

η
, w̄η). In particular, the foregoing implies that

g( f0(w,η))> 2h̄(w)+ a, and so

σ2

2
f ′0(w,η) = g( f0(w,η))− h̄(w)+η = g( f0(w,η))− 2h̄(w)+ h̄(w)+η > h̄(w)+ a

for every w∈ (w
η
, w̄η). We note that the above arguments hold for any a > 0.

On the other hand, by the definition of ϕη and (EC.11), we can find some a such that

ϕ
′
η
(w) = g′( f0(w,η)) f ′0(w,η)− 2h′(w)> (2/σ

2)g′(g−1(2h̄(w
η
)))(h̄(w)+ a)− 2h̄′(w)> 0. (EC.12)

This, however, is a contradiction due to our hypothesis which holds that ϕη(wη
) = ϕη(w̄η) = 0. As a result,

ϕη(w)≤ 0 for all w∈ [0, ŵη], from which the desired result follows. �

The proofs of Proposition EC.1 and the related Lemmas EC.6-EC.10 follow the similar arguments as the

proofs of Lemmas EC.1-EC.5, so they are omitted.
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Proof of Lemma EC.11. We first prove if α1 > α2, then ξα1(w,η(α1)) > ξα2(w,η(α2)). Suppose by

way of contradiction that this is not true. Then there exists w̄ such that ξα1(w̄,η(α1)) = ξα2(w̄,η(α2)) and

ξ′
α1
(w̄,η(α1))≤ ξ′

α2
(w̄,η(α2)). Then we can deduce that

σ2

2
(
ξ
′
α1
(w̄,η(α1))− ξ

′
α2
(w̄,η(α2))

)
= η(α1)−η(α2)≤ 0.

By the uniqueness of solutions to ODE, η(α1) < η(α2), so that there exists some w > w̄ such that

ξα1(w,η(α1))< ξα2(w,η(α2)). Next, using the comparison theorem for differential equations as in the proof

of Lemma EC.1, we know that ξα1(w,η(α1))< ξα2(w,η(α2)) must hold for all w∈ (w̄,∞). However, by the

continuity of ξα(w,η) with respect to η, there exists some ε > 0 such that ξα2(w,η(α2)− ε)> ξα1(w,η(α1))

for all w > w̄, which suggests ξα2(w,η(α2)− ε) grows to infinity as w grows large. But this contradicts to the

definition η(α) = inf Uα. Hence, ξα1(w,η(α1))> ξα2(w,η(α2)) on (0,∞).

Next, we prove η(α1) < η(α2) holds for all α1 > α2. Assume by contradiction this is not true, then

there exists some α1 > α2 such that η(α1)≥ η(α2). Using the standard comparison theorem for differential

equations and the continuity of ξα(w,η) with respect to η again, we know that there exists ε > 0 such that

ξα1(w,η(α1)− ε) grows to infinity, which leads to the contradiction. Hence, η(α) is a decreasing function.

Next, we show η(·) is a continuous mapping. Consider an increasing sequence {αn} with α being the limit.

For ease of notation, we write (ξαn(w,η(αn)),η(αn)) as (ξn(w),ηn). We aim to show that ηn→ η(α) as

n→∞. The aforementioned arguments show that {ξn(w)} is an increasing sequence and ξn(w)≤ ξα(w,η(α))

for each fixed w. Hence ξ∞(w) := limn→∞ ξn(w) is well defined for each fixed w. Integrating (28), we have

σ2

2
(ξn(w)−αn) =

∫ w

0

[
(ψ+ γ̄)ξn(x)+ g(ξn(x))− h̄(x)− c+η

]
dx.

Sending n→∞, we have

σ2

2
(ξ∞(w)−α) =

∫ w

0

[
(ψ+ γ̄)ξ∞(x)+ g(ξ∞(x))− h̄(x)− c+η

]
dx.

By the uniqueness of the solution, we have ξ∞(w) = ξα(w,η(α)). Similar arguments also apply to a decreasing

sequence of {αn} with α being the limit. Hence, we have proved η(α) is a continuous mapping. The last part

of the lemma can be established by using a routine proof-by-contradiction argument, which is elementary

and thus omitted. �

Proof of Lemma EC.12. We first prove part (i). The infinitesimal generator for (Y (t),W (t)) process can

be written as

L f (y,w) =

{
σ2

2 fww(y,w)−ψ fw(y,w)− γ̄y fw(y,w)−mmmT ϑϑϑ
?(y,w) fw(y,w), if w > 0,

ι fw(y,0), if w = 0,
(EC.13)

where ι is some constant (the derivation of the generator can be found on page 5 in Varadhan (2011)), and

ϑϑϑ
?(y,w) = arg maxϑϑϑ{vw(y,w)mmmT ϑϑϑ− δ(ϑϑϑ)}.
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Define the Lyapunov function as f (y,w) = wk + 1. We have f (y,0) = 1. For any k≥ 2, we can compute

that

L(wk + 1) =
σ2

2
k(k− 1)wk−2−ψkwk−1− γ̄ykwk−1−mmmT

ϑϑϑ
?(y,w)kwk−1, (EC.14)

for any w > 0.

Let F(w) := wk−1 − wk−2. Then F ′(w) = (k − 1)wk−2 − (k − 2)wk−3 ≥ 0 if and only if w ≥ k−2
k−1 . So,

wk−2 ≤wk−1−C1 where C1 = F( k−2
k−1). Then we have

L(wk + 1)≤
(

σ2

2
(k− 1)−ψ−mmmT

ϑϑϑ
?(y,w)

)
kwk−1− σ2

2
k(k− 1)C1

=

(
σ2

2
(k− 1)−ψ−mmmT

ϑϑϑ
?(y,w)

)
k(wk)

k−1
k − σ2

2
k(k− 1)C1.

If σ2

2 (k− 1)−ψ < 0, L(wk + 1)≤
(

σ2

2 (k− 1)−ψ

)
k(wk)

k−1
k − σ2

2 k(k− 1)C1. Let φ(x) := x
k−1

k , then φ is

a strictly concave function with φ(0) = 0 and φ(x) increases to infinity as x→∞. Thus, φ(wk + 1)− φ(wk) =∫ wk+1
wk φ′(t)dt strictly decreases such that φ(wk + 1)− φ(wk)≤ φ(1)− φ(0) = 1. Therefore, we have

L(wk + 1)≤ k
(

σ2

2
(k− 1)−ψ

)(
(wk + 1)

k−1
k − 1

)
− σ2

2
k(k− 1)C1.

By Theorem 4.1 on page 16 of Hairer (2021), we have lim supt→∞
E[([W (t)]k + 1)

k−1
k ]< ∞. This implies

lim supt→∞
E[W (t)k−1]< ∞. Since k≥ 2 can be any large number, we have the desired result.

Next, suppose σ2

2 (k− 1)−ψ≥ 0. By our assumption on the super linear growth of function g, we know

that mmmT ϑϑϑ
?(y,w) grows to infinity as w→ ∞. Therefore, for any constant τ ∈R, we can find a w̄ such that

mmmT ϑϑϑ
?(y,w)≥min(mmmT ϑϑϑ

?(0,w),mmmT ϑϑϑ
?(1,w))≥ τ for all w≥ w̄. Let τ = σ2

2 (k− 1)−ψ+ 1. Hence,

mmmT
ϑϑϑ

?(y,w)≥
(

σ2

2
(k− 1)−ψ+ 1

)
1w≥w̄.

Thus, we have

L(wk + 1)≤

{(
σ2

2 (k− 1)−ψ

)
k(wk)

k−1
k − σ2

2 k(k− 1)C1, if w < w̄,

−k(wk)
k−1

k − σ2

2 k(k− 1)C1, if w≥ w̄,

which implies

L(wk + 1)≤−k(wk)
k−1

k − σ2

2
k(k− 1)C1 +

(
σ2

2
(k− 1)−ψ+ 1

)
k(w̄k)

k−1
k . (EC.15)

Use the above arguments and Theorem 4.1 of Hairer (2021) again, we have the desired result. So the proof of

part (i) is complete.

Next, to prove part (ii), we apply Theorem 16.2 and Remark 16.1 in the notes of Varadhan (2011). For

f (w) = wk with k > 1, it has polynomial growth and we have f ′(0) = 0. Therefore, f (W (t))− f (W (0))−
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∫ t
0 LW (s)ds is a martingale so that E

∫ t
0 LW (s)ds = E[ f (W (t))]− E[ f (W (0))]. We can see that L(wk) =

L(wk + 1). From our previous calculations in Equation (EC.15) in part (i), we get L(wk)≤−awk−1 + b for

some a,b > 0. This gives

E[W (t)k]−E[W (0)k] =E
[∫ t

0
LW (s)kds

]
≤−E

[∫ t

0
aW (s)k−1ds

]
+ bt,

so that

E
[∫ t

0
aW (s)k−1ds

]
≤ bt +E[W (0)k]−E[W (t)k]≤ bt +E[W (0)k]. (EC.16)

Since it holds for any k > 1, the proof of part (ii) is done.

�

Proof of Lemma EC.13. Assume η∈L0 and f0(w,η) exists. To prove f0(w,η) is quasi-concave, we need

to show there exists only one local maximum point w0 such that f0(w0,η)≥ f0(w,η) for all w∈ [−b,wη,∞)

and η ∈ L0. Let w0 := inf{w >−b : f ′0(w,η)< 0}. Then f ′0(w0,η) = 0, and f0(w0,η) ≥ f0(w,η) for all

w∈ (−b,w0). Let w2 be the smallest value of w such that w > w0 and w2 is a local minimum of f0(w,η); if

there exists no w satisfying these conditions then it is immediate that f0(w,η) is quasi-concave.

Case 1: Suppose w2 > 0. Since w2 is a local minimum, it follows that there exist w̄0,w1 such that w2 > w̄0 > 0,

w1 > w2, f0(w̄0,η) = f0(w1,η), f ′0(w̄0,η)< 0, and f ′0(w1,η)> 0. We have

σ2

2
( f ′0(w̄0,η)− f ′0(w1,η)) =−

(
h̄(w̄0)− h̄(w1)

)
,

which is a contradiction because the left-hand side is strictly negative but the right-hand side is strictly

positive.

Case 2: Suppose w2 ≤ 0. The tangent line to f0(w,η) at the point w = w2 meets f0(w,η) at some point w = w3

where −b≤w3 < w0. To verify that w3 exists, since f0(−b,η) = 0, we need only check that f0(w,η) does

not have a root in the interval (−b,w2); for if f0(c,η) = 0 for c ∈ (−b,w2) then using the facts that h̄(w)

is strictly decreasing in w for all w < 0 and that the slope of f0(w,η) is positive at w =−b and negative at

w = c it follows that (27) cannot hold at both w =−b and w = c, a contradiction. It is possible that f0(w,η)

has a root at w = w2; this situation corresponds to w3 =−b. We have thus verified that w = w3 exists, where

−b≤w3 < w0.

Writing (27) for w = w3 and w = w2 and subtracting we get the equation below where the left hand side is

positive and the right hand side is strictly negative (since h̄(w) is strictly decreasing in (−b,0)), yielding a

contradiction:
σ2

2
( f ′0(w3,η)− f ′0(w2,η)) = h̄(w2)− h̄(w3).

This completes the proof of quasi-concavity.

Next, we prove limw→wη,∞ f0(w,η) = −∞. If wη,∞ < ∞, due to f ′0(w,η) ≤ 0 for all w ∈ (w0,wη,∞),
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limw→wη,∞ f0(w,η) = −∞. If, on the other hand, wη,∞ = ∞, assume limw→∞ f0(w,η) = l > −∞. We have

limw→∞ f ′0(w,η) = 0, so limw→∞ h̄(w) = η+ψl− g(l), which is a contradiction since the left-hand side is ∞

but the right-hand side is finite.

Finally, to prove L0 6= /0, we first notice that for all η < 0, f ′0(−b,η)< 0. Based on the above arguments,

we have f0(w,η)< 0, f ′0(w,η)≤ 0 for all w ∈ (−b,wη,∞) and limw→∞ f0(w,η) =−∞. By the continuity of

f0(w,η) with respect to η, we have f0(w,0) = limη↑0 f0(w,η) ≤ 0 and f ′0(w,0) = limη↑0 f ′0(w,η) ≤ 0. But

since f0(w,0)≡ 0 is not possible, there must exist some w1 > 0 such that f0(w1,0)< 0. Using the continuity

of f0(w,η) with respect to η again, we know that there exists some η1 > 0 such that f0(w1,η1)< 0. Hence,

there exists some w∈ (−b,w1) such that f ′0(w,η1)< 0, so η1 ∈L0. �

Proof of Lemma EC.14. We first prove part (i). The infinitesimal generator for (Y (t),W (t)) process can

be written as

L f (y,w) =

{
σ2

2 fww(y,w)−ψ fw(y,w)− γ̄y fw(y,w)−mmmT ϑϑϑ
?(y,w) fw(y,w), if w >−b,

ι fw(y,−b), if w =−b,
(EC.17)

where ι is some constant (the derivation of the generator can be found on page 5 in Varadhan (2011)), and

ϑϑϑ
?(y,w) = arg maxϑϑϑ{vw(y,w)mmmT ϑϑϑ− δ(ϑϑϑ)}.

Define the Lyapunov function as f (y,w) = (w+ b)k + 1. We have f (y,−b) = 1. For any k≥ 2, we can

compute that

L((w+ b)k + 1) =
σ2

2
k(k− 1)(w+ b)k−2−ψk(w+ b)k−1− γ̄yk(w+ b)k−1−ϑϑϑ

?(y,w)k(w+ b)k−1

(EC.18)

for any w >−b.

Let F(w) := (w+b)k−1− (w+b)k−2. Then F ′(w) = (k−1)(w+b)k−2− (k−2)(w+b)k−3 ≥ 0 if and only

if w≥ k−2
k−1 − b. Therefore, (w+ b)k−2 ≤ (w+ b)k−1−C1 where C1 = F( k−2

k−1 − b). Then we have

L((w+ b)k + 1)≤
(

σ2

2
(k− 1)−ψ−mmmT

ϑϑϑ
?(y,w)

)
k(w+ b)k−1− σ2

2
k(k− 1)C1

=

(
σ2

2
(k− 1)−ψ−mmmT

ϑϑϑ
?(y,w)

)
k((w+ b)k)

k−1
k − σ2

2
k(k− 1)C1.

If σ2

2 (k− 1)−ψ < 0, then

L((w+ b)k + 1)≤
(

σ2

2
(k− 1)−ψ

)
k((w+ b)k)

k−1
k − σ2

2
k(k− 1)C1.

Let φ(x) := x
k−1

k , then φ is a strictly concave function in x > 0 with φ(0) = 0 and φ(x) increases to infinity as

x→∞. Thus, φ((w+ b)k + 1)− φ((w+ b)k)≤ φ(1)− φ(0) = 1. Therefore, we have

L((w+ b)k + 1)≤ k
(

σ2

2
(k− 1)−ψ

)(
((w+ b)k + 1)

k−1
k − 1

)
− σ2

2
k(k− 1)C1.
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By Theorem 4.1 on page 16 of Hairer (2021), we have lim supt→∞
E[([W (t) + b]k + 1)

k−1
k ] < ∞. Since

E[([W (t)+ b]k + 1)
k−1

k 1−b≤W (t)≤0]∈ [0, (bk + 1)
k−1

k ], we have

lim sup
t→∞

E[([W (t)+ b]k + 1)
k−1

k 1W (t)>0]< ∞.

This implies

lim sup
t→∞

E[|W (t)|k−1] = lim sup
t→∞

(
E[|W (t)|k−11W (t)>0] +E[|W (t)|k−11−b≤W (t)≤0]

)
≤ lim sup

t→∞

(
E[([W (t)+ b]k + 1)

k−1
k 1W (t)>0] + bk−1

)
,

where k≥ 2. Since k≥ 2 can be any large number, we have the desired result.

Next, suppose σ2

2 (k− 1)−ψ≥ 0. By our assumption on the super linear growth of function g, we know

that mmmT ϑϑϑ
?(y,w) grows to infinity as w→ ∞. Therefore, for any constant τ ∈R, we can find a w̄ such that

mmmT ϑϑϑ
?(y,w)≥min(mmmT ϑϑϑ

?(0,w),mmmT ϑϑϑ
?(1,w))≥ τ for all w≥ w̄. Let τ = σ2

2 (k− 1)−ψ+ 1. Hence,

ϑϑϑ
?(y,w)≥

(
σ2

2
(k− 1)−ψ+ 1

)
1w≥w̄.

So, we have

L((w+ b)k + 1)≤

{(
σ2

2 (k− 1)−ψ

)
k((w+ b)k)

k−1
k − σ2

2 k(k− 1)C1, if w < w̄,

−k((w+ b)k)
k−1

k − σ2

2 k(k− 1)C1, if w≥ w̄,

which implies

L((w+ b)k + 1)≤−k((w+ b)k)
k−1

k − σ2

2
k(k− 1)C1 +

(
σ2

2
(k− 1)−ψ+ 1

)
k(w̄k)

k−1
k . (EC.19)

Use the above arguments and Theorem 4.1 of Hairer (2021) again, we have the desired result. Thus the proof

of part (i) is complete.

Next, to prove part (ii), we apply Theorem 16.2 and Remark 16.1 in the notes of Varadhan (2011). For

f (w) = (w + b)k with k > 1, it has polynomial growth and we have f ′(−b) = 0. Therefore, f (W (t))−
f (W (0))−

∫ t
0 LW (s)ds is a martingale so that E

∫ t
0 LW (s)ds =E[ f (W (t))]−E[ f (W (0))]. We can see that

L((w + b)k) = L((w + b)k + 1). From our previous calculations in Equation (EC.19) in part (i), we get

L((w+ b)k)≤−ā(w+ b)k−1 + b̄ for some ā, b̄ > 0. This gives

E[(W (t)+ b)k]−E[(W (0)+ b)k] =E
[∫ t

0
L(W (s)+ b)kds

]
≤−E

[∫ t

0
ā(W (s)+ b)k−1ds

]
+ b̄t,

so that

E
[∫ t

0
ā(W (s)+ b)k−1ds

]
≤ b̄t +E[(W (0)+ b)k]−E[(W (t)+ b)k]≤ b̄t +E[(W (0)+ b)k], (EC.20)

and therefore

E
[∫ t

0
ā|W (s)|k−1ds

]
=E

[∫ t

0

(
ā|W (s)|k−11−b≤W (s)≤0 + ā(W (s))k−11W (s)>0

)
ds
]

≤ ātbk−1 +E
[∫ t

0
ā(W (s)+ b)k−1ds

]
≤ ātbk−1 + b̄t +E[(W (0)+ b)k].

Since it holds for any k > 1, the proof of part (ii) is done. �
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EC.3 Comment on the Scaling Conditions and Baseline
Quantities/Functions

We first argue that, under the scaling conditions specified in (5), all terms in the objective function given

by (13) have an order of
√

Λ as Λ→∞. The third and fourth terms are clearly of order
√

Λ by the scaling

conditions on c and C, namely, c =
√

Λĉ,C =
√

ΛĈ, plus the fact that Y (t) takes values in {0,1}. The queue

length in heavy traffic is known to be of order
√

λ̄, and hence
√

Λ. By the scaling condition for hk, we know

that the second term in the objective is also of order
√

Λ. To show that the first term is also of order
√

Λ, we

first use Taylor’s series expansion of Ξ̂−1 at λ̄λλ:

Ξ̂
−1(λλλ)≈ Ξ̂

−1(λ̄λλ)+∇Ξ̂
−1(λ̄λλ)(λλλ− λ̄λλ)+ o(‖λλλ− λ̄λλ‖),

where ∇Ξ̂−1(λ̄λλ) represents the Jacobian matrix of Ξ̂−1 at λ̄λλ in this context. Hence, we have

δ(ϑϑϑ) = π(λ̄λλ)− π(λ̄λλ−ϑϑϑ)

=
√

Λ

〈
λ̄λλ, Ξ̂−1

(
λ̄λλ/Λ

)
− q̂qq
〉
−
√

Λ

〈
λ̄λλ−ϑϑϑ, Ξ̂−1

(
(λ̄λλ−ϑϑϑ)/Λ

)
− q̂qq
〉

≈
√

Λ

〈
λ̄λλ, Ξ̂−1

(
λ̄λλ/Λ

)
− q̂qq
〉
−
√

Λ

〈
λ̄λλ−ϑϑϑ, Ξ̂−1

(
λ̄λλ/Λ

)
−∇Ξ̂

−1
(

λ̄λλ/Λ

)
(ϑϑϑ/Λ)− q̂qq+O (1/Λ)

〉
=
−1√

Λ

〈
ϑϑϑ,∇Ξ̂

−1
(

λ̄λλ/Λ

)
ϑϑϑ

〉
+O(

√
Λ),

where we have used the first order condition

Ξ̂
−1

(
λ̄λλ

Λ

)
− q̂+(∇Ξ̂

−1)T

(
λ̄λλ

Λ

)
λ̄λλ

Λ
= 000.

Hence, the first term is also of order
√

Λ. In conclusion, all terms in the objective function are of the same

order of
√

Λ.

EC.4 An Exact MDP Solution to Multi-Product Systems

EC.4.1 State Descriptions and Transition Rates

To apply the MDP framework, we need further restrictions on assumptions about the processing times of

primary and secondary servers. Let the processing time of class k jobs on the primary server be exponentially

distributed with rate µk and the processing time on the secondary server be exponentially distributed with

rate γk.

We next define the state variables for the exact continuous-time MDP solution framework under a multi-

product system. Let (M1(t),Q(t),M2(t),Y (t)) be the state descriptor, where Q(t) is the K-dimensional vector

representing the number of jobs waiting in buffers and Y (t) = 0 or 1 is a scalar denoting the secondary

server is either on or off. The two new defined scalars M1(t) and M2(t) represent whether or not the primary

and secondary servers are busy and, if so, which class of jobs they are working on. To be more specific,
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M1(t)∈ {0,1, . . . ,K}, where M1(t) = 0 indicates the primary server is idle while M1(t) = k > 0 represents

the server is busy processing the class k jobs. M2(t) is defined in a similar way.

Next, we describe the state transitions under different actions. There are three control levers at the system

manager’s discretion: pricing, scheduling, and activating or deactivating the surge capacity. Pricing control

can be represented by λλλ, the arrival rates. Let m1(m2) ∈ {0,1, . . . ,K} be the priority rule of accepting the

class m1(m2) jobs to the primary server (secondary server), if there exists some class m1(m2) jobs waiting in

the queue for m1,m2 > 0. 0 indicates to make the server idle, and under the non-idling policy, this action only

happens when Qk(t) = 0 for all k. Henceforth, we use the tuple (λλλ,m1,m2) to represent the control action,

without changing the status of surge capacity.

We assume the system is non-preemptive, such that both the primary and secondary servers have to

complete processing the current in-service jobs before accepting new ones. In addition, we assume jobs

are routed to the primary server if both primary and secondary servers are idle. We next write down the

transition rate from state X to X ′ under the control (λλλ,m1,m2) as P(λλλ,m1,m2)(X ,X ′), where X = (M1,Q,M2,Y )

and X ′ = (M′
1,Q′,M′

2,Y
′). Let ek be the K-dimensional vector with the k-th component being 1 and all other

components being 0. We divide the discussion into two scenarios: Y = 0 or Y = 1.

When Y = 0, we have for k = 1, . . . ,K, the state transitions due to arrival events are

P(λλλ,m1,m2)((M1,Q,M2,0), (M1,Q+ ek,M2,0)) = λk, if M1 6= 0,

P(λλλ,m1,m2)((0,Q,M2,0), (k,Q,M2,0)) = λk, if M1 = 0.

The transition rates due to service completions when Y = 0 are

P(λλλ,m1,m2)((M1,Q,M2,0), (m1,Q− em11{m1 6=0},M2,0)) = µM11{M1 6=0},

P(λλλ,m1,m2)((M1,Q,M2,0), (M1,Q,0,0)) = γM21{M2 6=0}.

When Y = 1, we have for k = 1, . . . ,K, the state transitions due to arrival events are

P(λλλ,m1,m2)((0,0,M2,1), (k,0,M2,1)) = λk, if M1 = 0,

P(λλλ,m1,m2)((M1,0,0,1), (M1,0, k,1)) = λk, if M1 6= 0 but M2 = 0,

P(λλλ,m1,m2)((M1,Q,M2,1), (M1,Q+ ek,M2,1)) = λk, if M1 6= 0 and M2 6= 0.

For the service completion, when Y = 1, we have

P(λλλ,m1,m2)((M1,Q,M2,1), (m1,Q− em11{m1 6=0},M2,1)) = µM11{M1 6=0},

P(λλλ,m1,m2)((M1,Q,M2,1), (M1,Q− em21{m2 6=0},m2,1)) = γM21{M2 6=0}.
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In addition to the transition rates discussed above in the case that surge capacity status is kept unchanged,

we also need to specify the immediate system change when the surge capacity is activated or deactivated.

This immediate system change can be characterized by a map Tm. Specifically, we have

Tm((M1,Q,M2,0)) = (M1,Q,M2,1), if M2 6= 0,

Tm((M1,Q,M2,0)) = (M1,Q− em1{m6=0},m,1), if M2 = 0,

Tm((M1,Q,M2,1)) = (M1,Q+ eM21{M2 6=0},0,0).

EC.4.2 Uniformization and Optimality Conditions

Directly applying the continuous-time MDP framework is not amenable for computation. Hence, we apply

the uniformization technique to convert the continuous-time MDP to its embedded discrete-time MDP. To

this end, let us make a further assumption on the arrival rates such that 0≤∑
K
k=1 λk(t)≤Λ for all t ≥ 0. This

assumption is not restrictive since Λ can be regarded as the external job arrival rates. To ease the notation,

we define a constant

ᾱ := Λ+max
k

µk +max
k

γk.

We are now ready to write down the Bellman equation of the embedded discrete-time MDP, based on

the defined state descriptors and transition rates. Let V be the relative value function and η be the long-run

average cost. Also, let P(λλλ,m1,m2) ((M1,Q,M2,0), ·) denote the row of transition rate matrix. We have

V ((M1,Q,M2,0))+
η

ᾱ

= max

{
max

λλλ,m1,m2

[
1
ᾱ

(
〈P(λλλ,m1,m2) ((M1,Q,M2,0), ·) ,V 〉+ π(λλλ)−∑

k

hk(Qk + 1{M1=k}+ 1{M2=k})

)
+

(
1−
‖P(λλλ,m1,m2) ((M1,Q,M2,0), ·)‖1

ᾱ

)
V ((M1,Q,M2,0))

]
,

−C + max
λλλ
′,m′1,m

′
2,m

[
1
ᾱ

(
〈P(λλλ′,m′1,m

′
2)
(Tm(M1,Q,M2,0), ·) ,V 〉+ π(λλλ

′
)− c

−∑
k

hk(Tm(M1,Q,M2,0)(2, k)+ 1{M1=k}+ 1{M2=k})

)
+

(
1−
‖P(λλλ′,m′1,m

′
2)
(Tm(M1,Q,M2,0), ·)‖1

ᾱ

)
V (Tm(M1,Q,M2,0))

]}
,

and

V ((M1,Q,M2,1))+
η

ᾱ

= max

{
max

λλλ,m1,m2

[
1
ᾱ

(
〈P(λλλ,m1,m2) ((M1,Q,M2,1), ·) ,V 〉+ π(λλλ)−∑

k

hk(Qk + 1{M1=k}+ 1{M2=k})− c
)

+

(
1−
‖P(λλλ,m1,m2) ((M1,Q,M2,0), ·)‖1

ᾱ

)
V ((M1,Q,M2,1))

]
,
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max
λλλ
′,m′1,m

′
2,m

[
1
ᾱ

(
〈P(λλλ′,m′1,m

′
2)
(Tm(M1,Q,M2,1), ·) ,V 〉+ π(λλλ

′
)

−∑
k

hk(Tm(M1,Q,M2,1)(2, k)+ 1{M1=k}+ 1{M2=k})

)
+

(
1−
‖P(λλλ′,m′1,m

′
2)
(Tm(M1,Q,M2,1), ·)‖1

ᾱ

)
V (Tm(M1,Q,M2,1))

]}
,

where ‖ · ‖1 denotes the L1-norm. The optimal policy can then be derived by solving the Bellman equations.


