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A control policy for a make-to-order manufacturing system is typically derived based on a precise probabilistic
model governing demand realization. In practice, however, such a probabilistic model may be a simplification of
the actual scenario due to tractability considerations. Consequently, policies derived from such simplifications
may perform poorly if the assumed model does not accurately capture reality. To address this issue, this
paper proposes a modeling paradigm that can generate control policies based on a simplified model while
accounting for possible model errors that may result. The focus is on controlling a multi-product make-to-
order manufacturing system with an outsourcing mechanism, and the paper specifically addresses deliberate
simplification for the demand model. The robust control formulation takes the form of a two-player zero-sum
game. Because the original formulation is not tractable enough, the paper further presents an approximating
problem under the heavy-traffic assumption that effectively results in a stochastic differential game. The
solution to this game then translates into an implementable control rule that can be used for the original
make-to-order system. Additionally, the paper presents a simulation-based method for selecting an appropriate
uncertainty set. Numerical experiments are conducted to demonstrate the value of building “robustness” into
decision-making.
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1. Introduction
Embracing the make-to-order (MTO) strategy in manufacturing entails producing the final product
only upon customer order placement. Compared to the make-to-stock (MTS) strategy, MTO allows
for customizable products tailored to the needs of individual customers, minimizes the need for
maintaining inventories of finished goods, and reduces the environmental impact. In recent years, an
increasing number of manufacturers have transitioned from traditional MTS practices to more flexible
MTO models, a shift due to, in part, the proliferation of online marketplaces such as eBay, Walmart,
and Shein, which promise highly customized offerings. Another contributing factor to this shift is
technological innovation, including 3D printing, a technology that utilizes 3D printers to produce a
variety of printable products on demand and holds the promise for mass customization (Chen et al.
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2021). On the flip side, a challenge in implementing the MTO strategy is aligning supply with demand
because it cannot stockpile inventory to decouple demand variability from production, potentially
resulting in extended waiting times for customers.

The aforementioned trade-off has sparked significant interest in optimizing MTO operations.
Researchers in this field often model MTO systems as queueing systems, assuming that the demand
model, or more precisely, the probabilistic law governing demand, is known and accurately reflects
reality. However, in practice, the demand model may be oversimplified due to tractability considerations.
For instance, a doubly stochastic Poisson process with an auto-regressive intensity process might
be deemed appropriate for capturing observed auto-correlation among demand arrivals. However,
the precise intensity values over time are often unobservable. Even if observable, incorporating such
detailed information into the model can increase computational complexity. Thus, while it’s often
possible to develop a sophisticated “high-fidelity” model to describe demand realization, simplifying
assumptions such as “Markovian” and “stationarity” may be adopted to mitigate computational
challenges, resulting in a “low-fidelity” model.

In this paper, we explore how decision-makers can effectively utilize simplified models in MTO
manufacturing systems while addressing potential model errors and developing strategies to mitigate
their negative impacts. Specifically, we focus on a scenario where a manufacturing system produces
multiple product types with a shared capacity. While aiming to produce most products in-house,
the system can outsource production for certain items at a fixed and proportional cost as needed.
For example, for “printable” products, a professional 3D printing bureau may serve as an external
subcontractor to support in-house manufacturing efforts as needed. We operate under the stipulation
that the decision-maker knows the correct demand model but deems it too complex; meanwhile, he
is able to find a simplified model (the nominal model) believed to capture the essential features of
reality. This hints at a robust control formulation for the MTO system in question, which we develop
in this paper. To infuse “robustness” into decision-making, we leverage a notion stemming from a
stream of research pioneered by Hansen and Sargent (2001). The main idea is to extract a nominal
model and add nature as a malevolent second player that perturbs the nominal model within some
prescribed limits. The malevolence of nature serves as a tool for the decision-maker to explore the
fragility of candidate decision rules.

Broadly speaking, the way we incorporate the decision-maker’s wariness of model errors due to
model simplification on demand conforms to the general philosophy underpinning robust optimization
(RO), a popular modeling paradigm well-suited for addressing such an issue. RO seeks to resolve the
trade-off between using a high-fidelity model that better reflects reality and adopting a low-fidelity
model for tractability. It takes into account the discrepancy between the models by introducing an
uncertainty set believed to contain the true model. Recent research contributions in this area, such
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as those by Bandi et al. (2019), Sun and Van Mieghem (2019), have demonstrated the effectiveness
of RO in various applications. Notably, classical RO approaches are often static and may produce
overly conservative solutions, especially for problems involving immediate and wait-and-see decisions.
In contrast, our formulation allows nature’s perturbations to be adaptive to the system’s evolution,
making the uncertainty set only loosely specified, a feature that distinguishes our work from the
classical RO setting.

In greater detail, we assume the demand for each product arrives according to a non-homogeneous
Poisson process. However, the decision-maker does not know the true value of the arrival rate beyond
knowing that it may fluctuate around some long-term average. Hence, the decision-maker treats the
intensity as if it were chosen by nature. The decision-maker then calculates the expected long-run
average cost, assuming that nature acts in a way that maximizes costs, creating the worst-case
scenario. The decision-maker’s objective is to find a joint sequencing and outsourcing control strategy
to minimize this cost. The resulting formulation is a stochastic two-player zero-sum game where
nature’s actions are constrained as she incurs penalties for deviating from the nominal model. It is
crucial to make nature’s actions costly, and we demonstrate that penalizing nature is equivalent to
imposing constraints directly on the magnitude of her perturbations. The severity of the penalties
reflects the degree of distrust the decision-maker has towards the nominal model.

Building on a stream of studies employing similar analytical techniques (Çelik and Maglaras 2008,
Rubino and Ata 2009, Ata and Barjesteh 2023), we adopt an infinite time horizon to simplify our
mathematical analysis. This choice eliminates the need to account for time or time-to-go in the
optimality equation, thereby reducing the complexity of the problem. While real-world production
facilities may operate indefinitely, product line lifetimes are typically finite. However, the solution to
a finite-horizon dynamic programming problem tends to converge towards that of the corresponding
long-run average problem as the length of the time horizon increases; see, e.g., (Bertsekas 1995, section
4.3). Therefore, a solution derived from a long-run average problem likely remains relevant for cases
where product line lifetimes are relatively long. Additionally, we favor an average cost criterion over a
discounted cost criterion because time discounting is less common in manufacturing settings (Ormeci
et al. 2008) and an average cost problem is generally easier to handle as it avoids the complexity
associated with second-order differential equations.

Our robust control formulation requires specifying a statistical distance to quantify how far away a
perturbed model (created by nature) is from its nominal counterpart. For this purpose, we employ
Rényi divergence. For one thing, Rényi divergence provides greater flexibility in modeling compared
to Kullback-Leibler (KL) divergence, as demonstrated in our numerical experiments, where it leads to
better control rules compared to using KL divergence only. Moreover, the use of Rényi divergence
leads to a tractable representation of the distance between demand models, simplifying analysis and
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computation. While other generalizations of KL divergence, such as f-divergence, could potentially
be considered, they do not seem to be able to translate into a tractable representation of the model
distance in the present context.

Because the original robust control problem is intractable, both analytically and computationally, we
adopt the “heavy-traffic approximation” to make further headway. It implicitly assumes that demand
and service capacity are both high, resulting in server utilization nearing full capacity. This suggests
that the production server must operate almost continuously to meet demand. Admittedly, as we move
away from this critical loading condition, solutions obtained under heavy-traffic assumptions may
become less effective. However, practical considerations, such as cost constraints for manufacturers,
often dictate setting capacity levels that align with demand volumes. As the paper Bradley and Glynn
(2002) argues, the high cost of capacity can incentivize production firms to operate at high utilization
levels, naturally creating a heavy-traffic regime. Under-provisioning capacity can lead to increased
costs from rush orders or the need for outsourced production to meet demand, as well as delays in
order processing that can damage a manufacturer’s reputation, whereas over-provisioning capacity
may reduce profitability due to high fixed costs and resource waste. From a technical standpoint, our
use of heavy-traffic approximation aligns with the well-established solution framework pioneered by
Harrison (1988), where a Brownian control problem (BCP) naturally emerges as the heavy-traffic limit
of a sequence of queuing control problems. In our setting, the approximation leads to a stochastic
differential game (SDG), which we further transform into an equivalent one-dimensional problem,
known as the workload problem. This problem uses the system’s workload as the state descriptor.
The solution to the workload problem involves a control-band policy for the decision-maker and a
drift-rate control for nature. Whenever the workload surpasses an upper threshold, the decision-maker
promptly reduces it by outsourcing the manufacturing of a specific product, bringing it back to a
lower threshold level. Between consecutive outsourcing operations, nature employs a state-dependent
drift-rate control to address the decision-maker’s ambiguity aversion.

Our presentation and analysis of the heavy-traffic approximation are somewhat informal. We choose
not to rigorously demonstrate that the SDG arises as the heavy-traffic limit of a sequence of robust
control problems. In fact, we do not even employ a sequence of problems in developing the SDG.
Moreover, we do not attempt to prove that the control rule derived from the SDG is near-optimal.
However, given that much of our approximate analysis relies on results known for simpler systems, we
anticipate that the solution derived from the SDG will closely approximate the “exact” solution to
the original robust control problem. In our assessment, establishing a proper notion of near optimality
would be an arduous task and would deviate from our two primary objectives of using an approximate
analysis: (i) exploring the structure of the solution to the robust control problem, treating the SDG
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as an effective surrogate for the original problem in heavy traffic, and (ii) developing practical and
easy-to-implement control strategies.

We summarize the paper’s main contributions as follows: First, it investigates joint sequencing
and outsourcing control for an MTO system based on a simplified demand model. In particular,
outsourcing operations incur both fixed and proportional costs. Despite its clear focus on the control
of MTO systems, to the best of our knowledge, this paper is the first to address a long-run average
robust control problem with an uncertainty set loosely and adaptively chosen by nature. Second,
assuming the underlying system to be critically loaded, we derive and solve an SDG that approximates
the original robust control problem. Noting that a pathwise optimal solution does not exist for the
decision-maker due to nature controlling the drift of the state process, we identify the solution to
the game by solving a nonlinear differential equation with a set of free boundaries. In addition to
the aforementioned modeling and methodological contributions, we introduce a simulation-based
method for uncertainty set selection. This serves as a proof-of-concept demonstration of the practical
applicability of our proposed modeling framework. This method integrates our analytical model with
computer simulations to create and assess a range of closely related control rules, ultimately yielding
a control rule that is deemed the most suitable for real-world implementation.

2. Literature Review
This work draws on the literature on performance optimization in queues. When arrivals follow Poisson
processes and delay costs are linear, the cµ rule, which assigns static priority levels to jobs based on
their ciµi values, minimizes delay costs (Cox and Smith 1991). Some extensions of this rule take into
account more sophisticated cost structures (Van Mieghem 1995) and/or job abandonment from the
queue, including Rubino and Ata (2009), Kim and Ward (2013). Several papers have explored the
combination of economic levers (e.g., pricing) with operational decisions in managing MTO systems,
including Çelik and Maglaras (2008), Ata and Olsen (2013). Our paper differs from these studies in
one crucial aspect: these papers assume an accurate probabilistic model for optimization, whereas we
consider potential model errors that arise from model simplification, leading to a min-max optimal
control problem.

This paper contributes to the literature on sequential decision-making under ambiguous beliefs, a
problem category that involves a nominal model considered to be a parsimonious representation of
the real-world scenario, and a malevolent agent who can create alternative models by perturbing the
nominal model. The idea can be traced back to Hansen and Sargent (2001) and has been applied in
various domains, such as revenue management (Lim and Shanthikumar 2007). Aside from tackling
different problems, these papers consider either finite-time or infinite-time discounted criteria. In
contrast, we consider a long-run average formulation, which is fundamentally different from the
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aforementioned problem types. Our research bears similarities to the work of Cohen (2019), which
examines a differential game derived from the Brownian approximation of a multiclass M/M/1 queue
under model uncertainty. However, there are key distinctions between our approaches. Cohen (2019)
assume finite queue buffers whose sizes cannot be optimized. Thus, in his workload problem, a
barrier-type control is implemented at a predetermined level, so that the sole control lever is job
sequencing. The optimal control therein, the cµ rule, is pathwise optimal and independent of the
solution to the optimality equation, rendering the choice of uncertainty set irrelevant to the control
strategy. In contrast, our model incorporates outsourcing, and our derived strategy is influenced by
the choice of uncertainty set since it is not pathwise optimal. Furthermore, Cohen (2019) considers an
infinite-horizon discounted cost criterion, solving a second-order nonlinear differential equation with
fixed boundary conditions, while we focus on a long-run average cost criterion, solving a first-order
differential equation with free boundary conditions. Additionally, our use of Rényi-type divergence
sets our work apart from Cohen (2019). In summary, even if we also employ KL divergence as in
Cohen (2019) and eliminate fixed outsourcing costs, his approach is not applicable to our problem.

Methodologically, our paper is related to the impulse control of Brownian systems. Harrison et al.
(1983) and Dai and Yao (2013b) consider discounted cost formulations, and Ormeci et al. (2008) and
Dai and Yao (2013a) study average cost problems. Via explicit solutions, these studies reveal that a
control band policy is optimal. Our problem cannot be solved using their methods since the drift rate
is not constant and is subject to control by nature. Thus, obtaining explicit solutions is impossible.
Instead, we adopt an approach that does not require explicit solutions to the value function. A few
recent papers (Yao 2017, Cao and Yao 2018) have considered joint drift-rate control and impulse
control for Brownian models in joint pricing and inventory control problems. Our work differs from
theirs in two aspects: (i) their problems belong to the class of cost minimization problems, while ours
adopts a min-max criterion; (ii) their problems deal with a single-class model, while ours inherently
deals with multiclass models.

3. Nominal Model
All random quantities of interest in this section are on a probability space (Ω,F ,P) endowed with a
filtration F := (Ft) contained in F . We focus on a single-server MTO manufacturing system that offers
I different products indexed by i= 1, . . . , I. Requests for product i, henceforth referred to as class i
orders, arrive according to a Poisson process with rate λ̄i. We use Ai(t) to denote the number of class
i orders placed up to t and λ̄ := (λ̄i) the arrival rate vector that collects all the arrival rates. The time
needed to process a class i order follows an exponential distribution with rate µi. The mean processing
time for class i orders is therefore mi = 1/µi. Let Si(t) denote the number of completed class i orders
up to time t, assuming that the server is continuously working on class i orders. The decision-maker
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has discretion over the sequencing of orders but adheres to the head-of-line, or first-in-first-out,
sequencing principle within each queue. Aiming to retain tractability while following an existing
line of research utilizing a similar approximation procedure (Çelik and Maglaras 2008, Rubino and
Ata 2009, Ata and Barjesteh 2023), we assume that switching between the production of different
product types is instantaneous, so that there are no setup times between producing different products.
Hence, we can conveniently describe sequencing decisions by an I-dimensional process T := (Ti),
whose ith component tracks the cumulative amount of time spent producing product i; accordingly,
the cumulative idle time of the server up to t is (t−

∑
i Ti(t)). We expect that a solution obtained by

ignoring them may still prove effective if setup times exist but are short relative to service times. This
seems to be supported by numerical studies in Section EC.5. Therein, we also observe that longer
setup times can significantly compromise solution quality, a clear indicator that disregarding setup
times may overly simplify reality.

Remark 1. The use of a single-server system presents yet another possible oversimplification of an
MTO production system in real life, as a real-world system likely involves multiple servers. However,
since our analysis essentially follows the conventional heavy-traffic framework, we expect that an
N -server system will behave roughly the same as a system with a server that works N times faster
than each of the original server. This has been formally justified by Chen and Shanthikumar (1994)
under simpler settings (without control) and supported by our simulation study presented in §EC.7.
See also (Whitt 2002, chapter 10) for a comprehensive account of the stochastic process limits for
systems with multiple but not too many servers. Lastly, we note that similar simplifications are
adopted in related studies, such as Huang et al. (2015), where the authors approximate an N -physician
system in heavy traffic with a system having one “super” physician, and Liu and Sun (2022), where
the authors use one “super” drone to approximate an N -drone system.

The decision-maker has the option to outsource manufacturing needs at a fixed and proportional
cost. Specifically, outsourcing a batch size of x class i orders incurs a cost of φi(x) := (Li+ `ix) ·1{x>0},
where Li and `i are fixed and proportional costs, respectively. By doing this, the decision-maker is
able to instantly reduce the backlog of class i orders by x units, and we will refer to this type of
outsourcing activity as a type i outsourcing operation.

The ability of an outsourcing operation to instantly remove a number of pending orders from a
queue without incurring additional holding costs for those orders implies that the subcontractor
has a service rate that is infinitely high. In reality, there may be a lead time after the outsourcing
decision due to possible delays with order placement and manufacturing times at the subcontractor.
Incorporating such a lead time adds an additional layer of complexity, making the already challenging
decision problem more complex. As a result, we make the simple assumption that the subcontractor
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has a zero lead time but will discuss a possible way to relax this assumption in §EC.8.4, drawing
upon Wu and Chao (2014), Sun et al. (2024) and references therein.

We define Ψi := (τi(0), τi(1), . . . ; ξi(0), ξi(1), . . .), where 0 = τi(0)< τi(1)< · · · is a sequence of time
epochs at which a type i outsourcing operation is performed, and {ξi(k);k ≥ 0} is the sequence
of batch sizes of the consecutive type i outsourcing operations. We can then capture outsourcing
decisions by Ψ := (Ψi). Let Ni(t) := sup{k≥ 0 : τi(k)≤ t}, so that Ni(t) tracks the number of type i
outsourcing operations performed up to time t. Denote by Qi(t) the number of outstanding orders of
class i in the system at time t, and let Q(t) := (Qi(t)). Assuming that the system initially has Qi(0)
class i orders, we can describe the dynamics of Qi(t) using the equation

Qi(t) =Qi(0) +Ai(t)−Si(Ti(t))−
Ni(t)∑
k=0

ξi(k) for i= 1, . . . , I. (1)

The cost of holding a backlog of class i orders is incurred at a rate of ci(Qi(t)). Hence, the total
backlog penalty is accumulated at the rate of

∑
i ci(Qi(t)). We also introduce a function that will

prove useful in our analysis later on. Specifically, we define

h(w) := min
{

I∑
i=1

ci(xi) :m>x=w,x∈RI+

}
. (2)

Throughout this paper, we make the following assumption on the function h, which will hold when
each ci(·) is a linear or quadratic function. Such an assumption can be satisfied by most applications
of practical interest (Yao et al. 2015). It is important to note that this assumption is weaker than
requiring each ci(·) to possess the stated properties.

Assumption 1. The function h(·) is continuous, monotonically increasing towards infinity, and
bounded from below by an affine function with a positive slope.

A control policy can be represented by the pair (T,Ψ). Using the long-run average cost criterion,
the decision-maker aims to find adaptive control (T,Ψ) that minimizes

lim sup
t→∞

1
t
E

 I∑
i=1

∫ t

0
ci(Qi(u))du+

I∑
i=1

Ni(t)∑
k=0

φi(ξi(k))

 . (3)

The primary goal of this paper is to formulate and solve robust versions of (3).

4. Robust Control Problem
In reality, the demand rate for a product i may fluctuate over time, possibly in a random manner,
hinting to a time-dependent arrival rate function λi := {λi(t); t≥ 0} instead of a constant rate λ̄i. To
account for this, the decision-maker is interested in devising control policies that are robust against
such variations. To model this scenario, we assume that the decision-maker acts as if there is a
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second player (i.e., nature) who strategically chooses the vector of demand rate processes λ := (λi).
We further define a perturbation process θi := {θi(t); t≥ 0} for each i, where θi(t) := (λi(t)− λ̄i)/λ̄i
represents the relative deviation of λi from its nominal value λ̄i at time t.

We require that each θi is locally integrable and satisfies the condition that θi(t)∈Θi := [ai, bi] for
all t≥ 0, where −1< ai < 0< bi <∞.1 Here, we require each θi to be strictly bounded away from
−1 through the role of ai because we need to ensure ln(1 + θi(t)) is uniformly bounded, a condition
needed, for example, in the proof of Proposition 1. We observe, however, that such a requirement
should not pose significant harm since each ai can be made arbitrarily close to −1. The imposition
of the upper bound bi is mostly for technical convenience, and its precise value is inconsequential,
provided it is large enough. In fact, aside from its use in making sure that the differential equation
obeyed by the relative value function in §6.3 possesses the desired global Lipschitz continuity, nowhere
else do we need that upper bound.2 Hereinafter, we refer to θ := (θi) as the perturbation process.
Because λ and θ determine each other, we will treat θ as nature’s decision process instead of λ.

To capture the decision-maker’s fear of model errors, we follow the convention established by Hansen
and Sargent (2001), which allows nature to select a perturbation strategy within some prescribed limit
to maximize the decision-maker’s cost, effectively leading to a worst-case analysis. One major benefit
of a worst-case analysis is that it provides a conservative estimate of the solution’s performance. By
assuming that the model input takes on its worst possible values within the specified uncertainty
set, the decision-maker can design a solution that performs well even under the most unfavorable
scenario. Indeed, if the decision-maker is willing to accept the solution’s performance even in the
most unfavorable scenario, he can be confident in accepting any other outcomes that may arise due
to model simplification. Moreover, as pointed out in the influential survey by Bertsimas et al. (2011),
a worst-case analysis frees the decision-maker from the need to fully specify a probability distribution
governing uncertain model input while likely providing analytical and computational tractability
under suitable types of uncertainty sets.

Existing literature suggests two ways to loosely specify an uncertainty set: imposing constraints
on the magnitude of nature’s perturbations or penalizing nature’s perturbation actions based on
their magnitude. While the former aligns better with the core concept of RO, the latter aids in
analyzing and computing robust solutions more effectively, as one can easily write down the optimality
equation. Importantly, the two approaches are often found to yield equivalent outcomes (Hansen et al.

1 Requiring θi to be no less than −1 is obvious, because otherwise we would allow that θi(t)<−1 at time t, in which
case λi(t) will become negative at t, not making practical sense.
2 It may also be worth pointing out that imposing a sufficiently large upper bound on a drift rate control process to
allay technical complexity is not uncommon. For instance, both Ata et al. (2005) and Çelik and Maglaras (2008) have
made similar assumptions by introducing a large constant to bound the drift-rate control process; however, the value
of the constant has no bearing on the solutions.
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2006, section 4); see also Lim and Shanthikumar (2007). Hence, we adopt the latter approach for its

computational advantages and its better compatibility with a heavy-traffic analysis, which we will

carry out later on. We will, however, present in the next section an alternative formulation drawing

on the former approach, which resembles classical RO settings.

To proceed, we need a measure that can be used to quantify the extent to which perturbations are

made. For this purpose, we define, for each F-predictable θi, the Doléans-Dade exponential:

ψi(t) := exp
{
−
∫ t

0
λ̄iθi(u)du

} ∏
0<u≤t

(1 + θi(u))∆Ai(u), (4)

where ∆Ai(t) :=Ai(t)−Ai(t−); see Definition 9.4.3.1 in (Jeanblanc et al. 2009, §9.4.3). Note that

if θi ≡ 0, then ψi ≡ 1, implying λi ≡ λ̄i. Also, it is straightforward to verify that the process ψi :=

{ψi(t); t≥ 0} is a martingale. Denote by Pi the marginal distribution of Ai in the nominal model, we

can define a new measure Qi via the Radon-Nikodym derivative:

dQi

dPi

∣∣∣∣
Ft

= ψi(t) for t≥ 0. (5)

By the Girsanov theorem for filtered Poisson processes (Jeanblanc et al. 2009, Proposition 8.4.5.1),

Ai is a filtered Poisson process with intensity λi(t) = λ̄i(1 + θi(t)) under the induced measure Qi.

Identity (5) suggests that changing the intensity of Ai from λ̄i to λi is equivalent to changing

the measure from Pi to the induced measure Qi. This relationship brings to the fore the induced

measure Qi, allowing the use of the notion of distance between the measures Pi and Qi to measure

the magnitude of θi. Therefore, limiting the size of θi would correspond to controlling the distance

between the two measures. In this paper, we evaluate the distance between each (Pi,Qi) through the

Rényi divergence. In general, the Rényi divergence of a measure P̃ with respect to a reference measure

P of order α 6= 1 can be defined as

Rα(P̃‖P) := 1
α− 1 ln

∫ (dP̃
dP

)α
dP = 1

α− 1 ln
∫ (dP̃

dP

)α−1

dP̃.

When α= 1, the Rényi divergence reduces to the KL divergence; see, e.g., Van Erven and Harremos

(2014). So we may assume α ∈ (0,∞). Let Rαi (t) denote the Rényi divergence of Qi of order α with

respect to Pi on Ft. The following result links Rαi (t) to θi and its proof can be found in §EC.2.

Proposition 1. For each fixed t≥ 0,

Rαi (t) = λ̄i
α− 1

∫ t

0
{(1 + θi(u))α−αθi(u)− 1}du

if α 6= 1 and Rαi (t) = λ̄i
∫ t

0 {(1 + θi(u)) ln(1 + θi(u))− θi(u)}du if α= 1.
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After obtaining the explicit expression for Rαi (t), we can put each induced measure Qi back into
the background and treat the expression as the definition of Rαi (t). This allows us to focus solely
on the perturbation processes θi, rather than the measures they induce. With this, we have all the
vocabulary we need to present our robust control problem.3 In this problem, the decision-maker seeks
to find (T,Ψ) to minimize

max
θ

lim sup
t→∞

1
t
Eθ
 I∑
i=1

∫ t

0
ci(Qi(u))du+

I∑
i=1

Ni(t)∑
k=0

φi(ξi(k))−
I∑
i=1

γiRαi (t)

 , (6)

where we have again followed the literary convention to add the superscript θ to the expectation
operator to emphasize that the arrival intensities now follow λ̄+ θ instead of λ̄ in the nominal model.
It is clear from this formulation that nature’s actions are costly in the sense that the further away
the perturbed model is from its nominal counterpart, the heavier the penalty will be for nature.
Moreover, the severity of the penalty is determined by the parameters γ := (γi). To gain more intuition
into the role of γ, it is useful to treat it as a set of design parameters that a user of our modeling
framework can choose depending on the decision-maker’s level of trust in the nominal model. Higher
the value of γi, a more cautious nature will be in moving λi away from λ̄i, hence the more confidence
the decision-maker has in Pi in its ability to accurately describe the demand realization process for
product i. To further demonstrate that Problem (6), in fact, aligns with the core concept of RO, we
present an alternative formulation in the next section. This alternative formulation shares high-level
similarities with classical RO settings, as it imposes direct constraints to restrict the magnitude of
the perturbation caused by nature on the nominal model.

We stipulate that the decision-maker only considers stationary deterministic policies. Then, it
suffices for nature to limit herself to only considering stationary deterministic policies because, after
the decision-maker chooses a stationary and deterministic strategy, nature faces a Markov decision
process (MDP) in which nature aims to optimize a long-run average objective. It is known that there
exists a stationary deterministic policy that is optimal among all admissible policies.

5. An Alternative Formulation
Consider the following problem, where the decision-maker seeks to find (T,Ψ) to minimize

max
θ

lim sup
t→∞

1
t
Eθ
 I∑
i=1

∫ t

0
ci(Qi(u))du+

I∑
i=1

Ni(t)∑
k=0

φi(ξi(k))


subject to lim sup

t→∞

1
t
Eθ [Rαi (t)]≤ βi for i= 1, . . . , I.

(7)

3 Note that what nature perturbs is the distribution governing demand realization rather than specific realizations
of demand. As a result, our notion of “robust” really corresponds to “distributionally robust.” For a formal and
comprehensive account of the notion of distributional robustness and the corresponding distributionally robust
optimization, we refer the reader to the influential survey by Rahimian and Mehrotra (2019).
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This formulation involves I model-error constraints, where each βi measures the degree of mistrust
that the decision-maker has in the law governing class i arrivals in the nominal model. A larger value
of βi allows λi to deviate more from λ̄i, whereas a smaller value of βi forces λi to remain close to its
nominal value. Thus, as with γ in (6), we can consider β = (βi) as a set of tuning parameters that the
decision-maker can use to enhance the robustness of his control strategy.

It is instructive to view Problem (6) as the “Lagrange relaxation” of Problem (7), where parameters
γ = (γi) serve as the Lagrange multipliers associated with the I model-error constraints in (7), and
we will refer to Problems (6) and (7) as the penalty problem and the constraint problem, respectively.
The next natural question to ask is whether a Lagrange multiplier theorem exists between these two
formulations. This turns out to be true, albeit with additional regularity conditions.

As preparation, let C?
c (β) and C?

p(γ) denote the optimal values of the constraint and penalty
problems, respectively. Proposition 2, stated below, establishes a formal connection between C?

c (β)
and C?

p (γ). The result suggests that considering and solving the penalty problem is meaningful.

Proposition 2. Suppose the decision-maker restricts attention to stationary deterministic policies
that prevent queues from growing unbounded, and nature is allowed to choose from the class of
stationary policies (deterministic and randomized). For a fixed β, if γ? < 0 minimizes C?

p (γ) + 〈β, γ〉,
then C?

c (β) =C?
p(γ?) + 〈β, γ?〉. Furthermore, for the penalty problem, C?

p(γ?) can be achieved when
both players adopt stationary deterministic policies.

The proposition allows nature to select from stationary policies essentially because once the decision-
maker picks a strategy, nature faces a constrained Markov decision process (CMDP). In this CMDP,
nature seeks to optimize a long-run average objective while adhering to specific constraints, which
admits an optimal stationary policy among all the admissible policies. While mostly driven by technical
considerations, the requirement for queues not to grow unbounded under the decision-maker’s control
is intuitive. When deciding whether to outsource the production of a product, one must weigh the cost
of holding orders in the queue against the cost of outsourcing some of those orders. If there is no limit
on queue length, then the holding cost can increase substantially as the queue grows. Consequently,
there comes a point where holding orders is no longer cost-effective, making outsourcing a more
attractive option. Extensive numerical analyses support this conclusion, as demonstrated in Figures
2 and EC.3. The Lagrange multiplier theorems for the infinite-horizon discounted problem and the
finite-time problem were respectively established by Hansen et al. (2006) and Lim and Shanthikumar
(2007). However, we cannot directly apply their proofs since we are dealing with a long-run average
problem, which differs fundamentally from the settings in their works. Instead, we utilize the “convex
analytic method,” a technique first introduced in Bhatnagar and Borkar (1995) and further developed
in Altman (1999). We provide the detailed proof of Proposition 2 in §EC.1.
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6. Heavy-Traffic Analysis
In light of Proposition 1, we define

r(θ) := rα(θ) :=
I∑
i=1

γiλ̄i
α− 1 {(1 + θi)α−αθi− 1}

for α 6= 1 and r(θ) := rα(θ) :=
∑I
i=1 γiλ̄i {(1 + θi) ln(1 + θi)− θi} for α= 1. This allows us to express

the penalty problem more explicitly, yielding one where the decision-maker aims to minimize

max
θ

lim sup
t→∞

1
t
Eθ
 I∑
i=1

∫ t

0
ci(Qi(u))du+

I∑
i=1

Ni(t)∑
k=0

φi(ξi(k))−
∫ t

0
r(θ(u))du

 . (8)

Our development of the SDG will be based on Problem (8).

6.1. SDG
The operating regime we focus on is the one where both the demand volume and production capacity
are large and the capacity balances the supply and demand. To be more specific, we impose the
following “critical-loading” assumption:

I∑
i=1

ρi = 1 for ρi := λ̄imi, i= 1, . . . , I. (9)

Because the server’s long-run proportion of time spent on producing product i is ρi, the system can
be thought of as critically loaded if the nominal model is correct. Assume that nature employs θi to
generate the demand rate for product i. Assuming optimistically that θiλ̄i is an order of magnitude
smaller than λ̄i, we approximate Ai using

Ai(t) = λ̄it+ λ̄i

∫ t

0
θi(u)du+ Âi(t) + εai (t), (10)

where Âi is a Brownian motion with zero drift and variance parameter λ̄i and εai is an approximation
error term. Define, for each i, the centered time allocation process as Yi(t) := ρit−Ti(t). Note that∑
i Yi(t) tracks the cumulative idleness up to time t. Similarly, we approximate Si ◦Ti using

Si(Ti(t)) = µiTi(t) + Ŝi(t) + εdi (t) = λ̄it−µiYi(t) + Ŝi(t) + εdi (t), (11)

where Ŝi is a driftless Brownian motion with variance parameter λ̄i and εdi is an approximation error
term. Plugging (10) and (11) into (1), ignoring the approximation error terms, and replacing Qi, Yi,
and ξi with their respective approximations, denoted as Q̂i, Ŷi and ξ̂i, we obtain

Q̂i(t) = Q̂i(0) + Ẑi(t) +
∫ t

0
λ̄iθi(u)du+µiŶi(t)−

Ni(t)∑
k=0

ξ̂i(k), i= 1, . . . , I, (12)

Q̂i(t)≥ 0 for t≥ 0, i= 1, . . . , I, and (13)∑
i

Ŷi(t) is non-decreasing with
∑
i

Ŷi(0) = 0. (14)
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where Ẑi are independent Brownian motions with drift zero and infinitesimal variance σ2
i = 2λ̄i.

Denote by Ψ̂i the approximating type i outsourcing control, i.e.,

Ψ̂i := (τi(0), τi(1), τi(2), . . . , τi(m), . . . ; ξ̂i(0), ξ̂i(1), ξ̂i(2), . . . , ξ̂i(m), . . .).

By writing Ŷ := (Ŷi) and Ψ̂ := (Ψ̂i), we can formally state the decision-maker’s problem as one that
seeks an adapted control (Ŷ , Ψ̂) that minimizes

max
θ

lim sup
t→∞

1
t
Eθ
∫ t

0

(
I∑
i=1

ci(Q̂i(u))− r(θ(u))
)

du+
I∑
i=1

Ni(t)∑
k=0

φi(ξ̂i(k))

 (15)

subject to constraints (12)− (14).

6.2. Dimensional Reduction
Although the SDG is simpler than the original problem it approximates, its solution is not as simple
due to the high dimensionality of the state process Q̂ := (Q̂i). For this reason, we seek further
simplification, leading to a one-dimensional differential game referred to as the workload problem.

To start, we define the one-dimensional workload process W as follows:

W (t) :=
I∑
i=1

miQ̂i(t), t≥ 0, (16)

which serves as an approximation for the amount of work in the system at time t. As preliminaries to
the derivation of the workload problem, we define

B(t) :=
I∑
i=1

miẐi(t), ζ(t) :=
I∑
i=1

ρiθi(t), U(t) :=
I∑
i=1

Ŷi(t), and O(t) :=
I∑
i=1

Ni(t)∑
k=0

ξ̃i(k), (17)

where
ξ̃i(k) :=miξ̂i(k) for k≥ 0 and i= 1 . . . , I. (18)

Intuitively, ζ := {ζ(t); t ≥ 0} corresponds to perturbations nature makes to the workload; U(t)
approximates the cumulative idle time up to t, and O(t) approximates the cumulative amount of
work outsourced up to t. Multiplying (12) by mi and summing over i plus utilizing the definitions in
(17) and (18), we obtain the system equation for the workload process:

W (t) =W (0) +B(t) +
∫ t

0
ζ(u)du+U(t)−O(t).

Recall the function h defined in (2). Note that the function can be naturally interpreted as the
effective holding cost rate in the following sense: Given that the total workload w can be instantaneously
redistributed across all classes in any way the decision-maker desires, the amount of work will be
distributed in such a way that the aggregate holding cost rate is minimized. Similarly, we can define
nature’s “cost rate function” as

r?(z) := min
{
r(y) : ρ>y = z, yi ∈Θi

}
, (19)
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where z ∈ [ρ>a, ρ>b]. Associated with I different types of outsourcing operations, there are I different

outsourcing cost functions, corresponding to I different ways to push down the workload to a desired

level. For type i outsourcing operations, we define

φ̃i(w) := (Li + ˜̀
iw) · 1{w>0} for ˜̀

i := `i/mi.

We can interpret ˜̀
i as the proportional cost of outsourcing one unit of work through type i outsourcing

operations, and we denote by Ψ̃ the outsourcing rule for the workload process. Slightly overloading

the notation (W,B, ζ,U and ξ̃i(k) were all previously defined), we can spell out the workload problem,

where the decision-maker seeks some adaptive control (U, Ψ̃) to minimize

max
ζ

lim sup
t→∞

1
t
Eζ
∫ t

0
h(W (u))du−

∫ t

0
r?(ζ(u))du+

I∑
i=1

Ni(t)∑
k=0

φ̃i(ξ̃i(k))

 (20)

s.t. W (t) =W (0) +B(t) +
∫ t

0
ζ(u)du+U(t)−O(t), (21)

U(t) is non-decreasing with U(0) = 0, and (22)

W (t)≥ 0 for t≥ 0. (23)

Here, the superscript ζ in the expectation operator means that there is a state-dependent perturbation

ζ to the drift of the underlying process and B is a zero-drift Brownian motion with infinitesimal

variance σ2 =
∑
im

2
iσ

2
i . The next result shows the equivalence of the SDG and the workload problem.

The corresponding proof can be found in §EC.2.

Proposition 3. The SDG and the workload problem are equivalent in the following sense: For

every admissible control (Ŷ , Ψ̂) for (12)–(15), there exists an admissible control for (20)–(23) with

at least as good performance; and for every admissible control (U, Ψ̃) for (20)–(23), there exists an

admissible control for (12)–(15) with the same performance.

6.3. Characterization of the Optimal Solution
Because nature’s control only depends on the current workload, we will now write ζ(W (t)) instead of

ζ(t). For the decision-maker, this means that an outsourcing rule would be in the form of a control

limit, which we will briefly describe below. It is evident that a deviation from the work-conserving

principle can only hurt the decision-maker, so the idleness process U ought to satisfy∫ t

0
1{W (u)>0}dU(u) = 0, t≥ 0.

6.3.1. Control Band Policy Following Harrison et al. (1983), we define a relevant class of

control rules as follows.
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Definition 1. Given some i∈ {1, . . . , I} and two parameters q, s with 0< q < s, we call (i, q, s) a
control band policy of type i with parameters (q, s), if the decision-maker utilizes type i outsourcing
operations only, and upon W reaching the upper barrier s, the decision-maker enforces a downward
jump to level q, thereby incurring a cost of φ̃i(s− q).

Now, for an arbitrarily given real-valued function ζ(·), define the differential operator Γζ as
Γζf(w) = 1

2σ
2f ′′(w) + ζ(w)f ′(w). For a fixed s > 0, let C2[0, s] denote the space of functions that

are twice differentiable up to the boundaries. Suppose that there exists some η ∈R and f ∈ C2[0, s]
collectively satisfying

Γζf(w) +h(w)− r?(ζ(w)) = η for w ∈ (0, s), (24)

subject to the boundary conditions

f ′(0) = 0 and f(s) = φ̃i(s− q) + f(q). (25)

The proposition presented below motivates the optimality equation to be described in the subsequent
subsection. The proof of this identity is a routine application of Itô’s formula, which we omit here.

Proposition 4. Suppose η ∈R and f ∈ C2[0, s] jointly satisfy (24) and (25). Then η is the long-run
average cost under the control band policy (i, q, s) and the drift-rate control ζ(·).

6.3.2. Optimality Equation The analysis proceeds in three steps. First, using the boundary
and smooth pasting conditions while taking nature’s strategic behavior into account, we identify a
control band policy, denoted as (i, qi, si), that mini-maximizes 4 the long-run average cost within the
class of controls, utilizing type i outsourcing operations only. We denote by ηi the resulting long-run
average cost of this strategy. Second, we define the candidate solution to the decision-maker’s decision
problem as the one yielding the lowest long-run average cost under the specified minimax criterion.
More formally, we select i? so that ηi? ≤ ηi for all i 6= i?, with the control band policy (i?, qi? , si?)
viewed as a potential solution to the decision-maker’s problem. Third, by exploiting the structural
properties of the value function associated with the control band policy (i?, qi? , si?), we demonstrate
that this strategy is indeed average cost optimal for the decision-maker under the minimax criterion
among all adaptive controls that the decision-maker can take.

Proposition 4 motivates the following optimality equation that facilitates the identification of the
control band policy (i, qi, si) as mentioned earlier: find qi, si, ηi ∈R and v ∈ C2[0, si] such that

max
ζ

{1
2σ

2v′′(w) + ζv′(w) +h(w)− r?(ζ)
}

= ηi, w ∈ (0, si), (26)

4 Here, “mini-maximizes” refers to the decision-maker selecting the specific policy to minimize his long-run average
cost, while nature employs a drift rate control ζ to maximize the decision-maker’s cost.
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subject to the boundary conditions

v′(0) = 0, v(si) = φ̃i(si− qi) + v(qi), and v(w) = ˜̀
i(w− si) + v(si) for w≥ si, (27)

plus a set of optimality conditions stemmed from the “principle of smooth fit”: v′(qi) = v′(si) = ˜̀
i.

Letting g(x) denote the convex conjugate of the function r?(ζ), i.e.,

g(x) := max
ζ
{xζ − r?(ζ)} for x∈R,

we can rewrite (26) as
1
2σ

2v′′(w) + g(v′(w)) +h(w) = ηi, w ∈ (0, si). (28)

Because (28) does not involve the unknown function v, it is in essence a first-order differential equation.
This motivates us to consider the class of functions {π(·, η);η ∈R}, where π(·, η) solves

1
2σ

2πw(w,η) + g(π(w,η)) +h(w)− η = 0, (29)

subject to the boundary condition

π(0, η) = 0. (30)

The parameter pair (qi, si) and the average cost ηi are determined through conditions:

π(qi, ηi) = π(si, ηi) = ˜̀
i and

∫ si

qi

π(w,ηi)dw= φ̃i(si− qi). (31)

The expressions in (30) and (31) effectively make up four constraints. However, two questions remain
unanswered. First, does the system of equations given in (29)–(31) yield a solution (i.e., suffice to pin
down the four unknowns, qi, si, ηi and π(·, ηi))? Second, given that the answer to the first question is
yes, does the control band policy (i, qi, si) yield the lowest cost possible if the decision-maker were
to choose to outsource the manufacturing needs of product i only? Our next result gives positive
answers to these questions.

Proposition 5. Under Assumption 1 holds, the following statements are true. (i) The requirements

in (29)–(31) uniquely determine qi, si, and ηi. (ii) If we define v(·) such that its first-order derivative

is equal to π(·, ηi) on the interval [0, si), and v(w) = v(si) + (w− si)˜̀
i for w≥ si, then the pair (v, ηi)

satisfies the following quasi-variational inequality:

min
{1

2σ
2v′′(w) + g(v′(w)) +h(w)− ηi, inf

0≤z≤w

[
v(w− z) + φ̃i(z)

]
− v(w)

}
= 0. (32)

(iii) Independent of the initial condition, the control band policy (i, qi, si) mini-maximizes the long-run

average cost among the class of adaptive controls only utilizing type i outsourcing operations.
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The detailed proof of Proposition 5 is given in §EC.2. In studying a joint impulse and drift rate
control problem, Cao and Yao (2018) obtain an optimality equation similar to ours. However, there is
a key difference: Cao and Yao (2018) consider impulse control on both sides, introducing an additional
degree of freedom related to the value of v′(0). In our case, we focus on “one-sided” impulse control,
where the left boundary of v′(0) remains fixed at zero.

Proposition 5 allows us to find a triple (qi, si, ηi) for each fixed i, leading to the optimal control
rule when only type i outsourcing operations are available. Notably, there exists a winning type
i? ∈ {1, . . . , I} such that ηi? ≤ ηi for all i 6= i?. Intuitively, the resulting control band policy (i?, qi? , si?)
minimizes the long-run average cost among all adaptive controls that utilize only one type of
outsourcing operation. However, a natural question arises: Does this rule also minimize the long-run
average cost among all possible adaptive controls available to the decision-maker? To investigate, we
aim to find a function v that is twice differentiable almost everywhere, has a bounded and continuous
first-order derivative, and satisfies the Bellman-Isaacs condition:5

min
{1

2σ
2v′′(w) + g(v′(w)) +h(w)− ηi? ,min

i
inf

0≤z≤w

[
v(w− z) + φ̃i(z)

]
− v(w)

}
≥ 0 (33)

with v′(0) = 0. The subsequent Theorem 1 establishes that if such a function v exists, the control
band policy (i?, qi? , si?) is indeed optimal.

Theorem 1. If some function v, which is twice differentiable almost everywhere and has a bounded
first-order derivative, satisfies (33) with v′(0) = 0, then the control band policy (i?, qi? , si?) is average
cost optimal under the minimax criterion among all adaptive controls.

To put Theorem 1 to good use, we need to demonstrate the feasibility of constructing a function
v that satisfies all the specified properties. In order to achieve this, we let ˜̀∗ := mini ˜̀

i and define
(s∗, ˜̀∗) as the coordinates of the point where the function graph of π(·, ηi?) intersects the horizontal
line ˜̀∗ for the second time. By making these preparations, we can now state Proposition 6, which
guarantees the existence of a function v with the desired properties.

Proposition 6. Let v be such that its first-order derivative is equal to π(·, ηi?) on the interval
[0, s∗), and v(w) = v(s∗) + (w− s∗)˜̀∗ for w≥ s∗. Then v satisfies (33).

The detailed proofs of Theorem 1 and Proposition 6 can be found §EC.2. We will utilize these
results to develop practical policy recommendations in §6.4. In closing, we remark that when fixed
costs Li are all zero, outsourcing controls become singular, and one can read off the cheapest product
to outsource when the backlog of work is excessive. This simplified problem resembles one in Cohen

5 For a dynamic programming equation used to characterize the solution to a differential game, the norm is to refer to
it as the Hamilton-Jacobi-Bellman-Isaacs equation or the Bellman-Isaacs equation for short (Pham and Zhang 2014);
the name “Bellman-Isaacs condition” has been used in Hansen and Sargent (2001) and Hansen et al. (2006).
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(2019), where a right boundary plays a role similar to ours. However, our s? is a policy parameter

that requires optimization, unlike Cohen’s predetermined boundary associated with job rejection.

Also note that when Li equals L for all i, which is typically the case when all outsourcing goes to the

same contract manufacturer, the class i with the smallest ˜̀
i becomes the cheapest to outsource.

6.4. Policy Recommendations

To propose an implementable control rule based on the solution to the workload problem, we take

both α and γ as given and fixed and calculate (i?, qi? , si?) and π(·, ηi?). If qi? and si? are not integers,

we round them to the nearest integers. A procedure regarding how to select γ for a given α in a

practical setting efficiently will be the focus of Section 8. We slightly overload the notation W (t) (W

was previously defined to denote the approximate workload process) to let it now denote the workload

of the actual system at time t. It follows that W (t) =
∑
imiQi(t), where Qi(t) is the actual number of

class i orders awaiting processing at t. The proposed control has two components, as described below.

Outsourcing. Whenever the workload reaches the upper barrier si? , outsource oi? := (si? − qi?)/mi?

orders of product i? immediately, if there are enough oi? orders of product i? awaiting processing. If

the number of outstanding orders of class i?, say Qi? , is less than oi? , then postpone the outsourcing

operation until additional (oi? −Qi?) orders of product i? arrive. We mention that postponement can

be accomplished by creating a virtual queue to hold current orders of class i? and routing new orders

of this class to this virtual queue until the queue length reaches oi? , at which point an outsourcing

operation is performed to deplete the virtual queue. As a result, from the time those orders are moved

to the virtual queue until the outsourcing operation occurs, the i?th queue is considered empty.

Sequencing. We stipulate that there is a unique solution (x?i ) to the optimization problem (2) for

each fixed w.6 We can regard the solution as a function of w serving as the target length of the queues

when the workload is at position w. Thus, a desired sequencing rule ought to be one that tries to

maintain the actual queue lengths at their respective targets, (x?i ). When the waiting cost rates are

linear, i.e., ci(x) =Cix for some constant Ci > 0, we can recover the well-known cµ priority rule. When

all ci(·) are strictly convex and satisfy ci(0) = c′i(0) = 0, it leads to the generalized cµ rule, which

states that service priority is given to the job class whose c′i(Qi(t))µi index is the largest at time t.

7. Discussion
We comment on some key aspects of the modeling framework proposed in this paper.

6 This stipulation merely seeks to mitigate the potential technical complexity and is satisfied in various settings.
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7.1. Connections to Harrison’s Framework
We now briefly explain how to scale different model primitives if we were to directly adopt Harrison’s
framework, which involves a sequence of problems indexed by a scaling parameter, denoted as n. In
our context, one can think of the scaling parameter n as the sum of the nominal arrival rates λ̄i,
growing to infinity to create a sequence of models. To start, each λ̄i should grow proportionally to n;
i.e., λ̄i = ιin for some ιi. To maintain condition (9), we need each service rate µi to grow proportionally
to n. We also need to scale the cost parameters associated with outsourcing operations and the cost
rate functions ci and r. For the decision-maker, the crux is the trade-off between waiting costs and
outsourcing costs. To ensure this trade-off is nontrivial, these two costs need to be of the same order
of magnitude. We can achieve this by leaving the fixed outsourcing costs unscaled but scaling down
the proportional outsourcing costs by a factor of

√
n. Moreover, we let the waiting cost rate function

in the n-th system, denoted as cni , be scaled so that cni (·) = ĉ(·/
√
n), where ĉ is a baseline function

independent of the scaling parameter n, and nature’s penalty rate function in the n-th system, denoted
as rn, be scaled in such a way that rn(·) = r̂(

√
n·), where r̂ is a baseline function independent of the

scaling parameter. We can accomplish this by letting γni = γ̂i/n for every i, with each γ̂i being a value
independent of the scaling parameter n, so that we can write r̂ as

r̂(x) =
I∑
i=1

γ̂iιi
α− 1{(1 +xi)α−αxi− 1}

for α 6= 1 and r̂(x) =
∑I
i=1 γ̂iιi{(1 +xi) ln(1 +xi)−xi} for α= 1.

The scaling condition imposed on the penalty rate function implies that nature’s perturbations are
moderate, with an order of 1/

√
n. This, in turn, implies that the system will remain critically loaded

for a sufficiently large value of n, due to (9) and that nature’s perturbations are moderate. Then
standard heavy-traffic approximation theory suggests that the queue lengths will be of the order of
√
n, commensurate with the scaling condition imposed on the waiting cost rate functions. Moreover,

according to the dynamic equation (1), the outsourcing batch size in the n-th system, denoted as
ξni , should be of the same order of magnitude as the queue length. This means that the outsourcing
batch size will also be around

√
n, compatible with the scaling condition imposed on the proportional

outsourcing costs.

7.2. About the Proposed Control Rule
The derivation of the SDG assumes a critically loaded system with high demand and service rates.
Under this assumption, the robust control problem simplifies significantly, reducing the state space
dimension from I + 1 to one.7 This enables our solution to decompose over two time scales.

7 The original system comprises I + 1 dimensions: I dimensions representing state processes Q̂, alongside an additional
dimension dedicated to tracking the current class of product in service. Our sequencing strategy relies on the current
class in service, following a non-preemptive service rule.
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On the faster time scale, we optimize the distribution of workload across classes based on the
current total workload. Whereas instantaneous redistribution is not practical (unlike in the SDG),
adjustments to queue lengths can be made relatively quickly, at a rate of approximately n (if we
were to borrow the terminology from §7.1). Specifically, if queue lengths fall short of targets, the
corresponding classes temporarily lose server access, causing queues to only receive inflow from demand
arrivals. As demand arrives at a rate of order n, significantly higher than the queue lengths of order
√
n, actual queue lengths rapidly return to targets within a time length of order 1/

√
n. By the same

token, classes whose actual queue lengths exceed the targets gain exclusive access to the total service
capacity, thereby seeing “an underloaded system” due to the critical-loading condition (9) and the
fact that nature’s distortions are moderate. In particular, as the net outflow (the actual outflow from
these queues minus the inflow) is of order n for these classes, their queue lengths will also quickly
return to their targets, again within a time length of order 1/

√
n. On the slower time scale, where the

total workload evolves, we solve an impulse control problem to determine when and to what extent to
reduce the workload, giving rise to the proposed outsourcing rule. Although we allow postponing an
outsourcing operation until a sufficient number of class i? orders are received, the delay caused by
the postponement is expected to be short if the threshold is small. Larger thresholds may result in
longer delays, potentially defeating the purpose of reducing an excessive workload, as orders in the
virtual queue will continue to accrue holding costs. However, we mention that in heavy traffic, long
delays are rare, even with large thresholds. To see this, note that the control parameters qi? and si?

are supposedly of order 1/
√
n, as they are used to regulate the workload, which is also of order 1/

√
n,

and since mi? is of order 1/n, oi? should be of order
√
n. Because the virtual queue faces a demand

rate of roughly λ̄i? , which is of order n, the virtual queue will be filled up relatively quickly to the
desired target oi? at a rate of order

√
n.

One caveat is that accumulating enough outsourceable orders may be slow if the cheapest class
to outsource has very low demand. In such cases, this class is deemed to have a “thin arrival,” as
described in Ata (2006)—the usual assumption that the demand rate for each class is of order n does
not hold. Thus, when formulating the SDG and the corresponding workload problem, the role of this
class would be limited to contributing to the drift rate in the approximation (Ata 2006), so that this
class is not considered a “legitimate class” for outsourcing, potentially resolving the issue.

7.3. Selecting the Uncertainty Set
The main motivation behind adopting a robust control formulation lies in striking a balance between
tractability and practicality, a trade-off that hinges on the choice of the underlying uncertainty set. If
the set is too restrictive, it may fail to include the true model; conversely, an excessively large set can
yield overly conservative solutions. In our context, “model uncertainty” arises because of deliberate
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model simplification. We thus proceed with the assumption that the true model governing demand

realization is known but deemed too complex.

Drawing from our earlier discussions, two potential routes naturally arise for selecting an uncertainty

set. The first route can begin with the constraint problem, where one determines an appropriate β by

assessing the dissimilarity between the true and nominal models. One can then utilize Proposition 2 to

derive a corresponding γ. This route, however, faces two obstacles: (i) Computing the aforementioned

dissimilarity may be difficult, especially when the true demand model is very complex. (ii) It requires

establishing a functional relationship between β and γ, a task that can be computationally demanding,

especially when I is large. The second route is to determine a “good” γ directly. What we will propose

in the next section follows this route and draws inspiration from a set of parallels between our penalty

problem and regularized regression (RR), a popular model in machine learning. RR has the ability to

reduce the sensitivity of linear regression, an effect that can be explained from a robustness perspective

(Bertsimas et al. 2011). Indeed, the regularization coefficient thereof, akin to γ in our penalty problem,

serves as the dual variable of a corresponding robust linear regression problem (Xu et al. 2008). Thus,

adjusting the regularization coefficient in RR is tantamount to adjusting robustness levels. The typical

approach for determining this coefficient is cross-validation, whose underlying mechanism serves as a

direct motivation for our proposed method to be illustrated next.

8. A Simulation-based Method for Uncertainty Set Selection
We describe our method for selecting the parameter γ with α fixed. We note, however, that jointly

optimizing α and γ is possible and may provide further performance improvement. In §EC.10, we

discuss this issue further, explaining why we choose to downgrade the significance of α and focus on

optimizing over γ. We first explain the main idea and then provide an algorithm to operationalize it.

Although the true demand model may be complex, one can often find a simplified one to serve as the

nominal model in the formulation of a robust control problem. With each fixed vector γ, we can solve

the corresponding SDG to obtain a robust control rule, denoted as P(γ), a step akin to computing

all the regression coefficients in an RR model with a given regularization coefficient, resulting in a

“predictive model.” As mentioned previously, one can use cross-validation to “optimize” the choice

of regularization coefficient. Roughly speaking, by splitting the original dataset into training and

testing sets, this approach can estimate the performance of each predictive model, and the “optimal”

regularization coefficient is the one for which the resulting predictive model exhibits the best estimated

performance. The role of the dataset used for solving an RR model parallels that of the true demand

model. Assume optimistically that combining the control rule P(γ) with the true demand model
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results in a long-run average cost, denoted as C(γ).8 Note that C(γ) serves as a performance indicator
for P(γ). Thus, it is natural to pick P(γ) that minimizes C(γ).

If the expression for C(γ) is known, a gradient-descent algorithm is likely to work to locate a
minimizer. However, obtaining such an expression may prove difficult. On the other hand, one may
be able to evaluate the function value of C via computer simulations, where we simulate demand
realizations based on the true model. The “best” γ is the one that yields the lowest estimated cost
from the simulation. This motivates our proposed algorithm, which is close in spirit to a standard
gradient-descent algorithm but substitutes a finite difference for gradient (Spall 2005, chapter 6).
Algorithm 1, which we refer to as the “quasi-gradient-descent” algorithm, illustrates how to find cost-
minimizing γ for a fixed α. In the algorithm, κ represents the learning rate, and γ(j) := {γ(j)

1 , . . . , γ
(j)
I }

represents the γ value at the end of the jth outer iteration. Ĉ(γ) denotes the simulation estimate
of C(γ). By selecting a small δ ∈R+, we approximate the ith component of the gradient of C at the
point γ(j) using

∇Ci(γ(j)) := Ĉ
(
γ(j) + δei

)
− Ĉ

(
γ(j)− δei

)
2δ ,

where ei denotes the unit vector whose ith component is one and the remaining components are
zero. We present two 2-class examples in §9.2 and a 4-class example in §EC.6 that demonstrate the
efficiency of our simulation-based method.

Because the algorithm for finding the minimizing γ relies on simulations, the warm-up period,
often defined as the initial simulation period needed for the system to reach a steady state, becomes
a crucial parameter that needs to be chosen carefully. The longer the warm-up period, the more
likely it is that the simulated system will be in or approaching a steady state. However, a too long
warm-up period consumes a significant portion of the total simulation time. In our numerical studies,
we determine the appropriate warm-up period through a naive “sensitivity analysis.” This involves
comparing statistical estimates of the desired output variable (long-run average cost) under two
candidate warm-up periods, T1 and T2, where T1 <T2. If there is no noticeable difference between the
estimates, we adopt T2 as the warm-up period. We also explore more sophisticated approaches for the
warm-up period selection in §EC.9. The number of replications, which determines how many times
the simulation model is executed, is another important parameter requiring judicious selection. More
replications improve accuracy but also increase computational time. One approach to determining the
appropriate number of replications is by measuring the variability of the output variable. After each

8 Here, we take an optimistic view because, without a formal specification of the true demand model, there is no
guarantee that the demand model, along with the control derived from the SDG with the penalty parameter γ, has a
well-defined long-run average cost. This contrasts with settings where the demand model is explicitly defined, such as
Poisson or some Markov process. In those cases, it becomes possible to formulate the problem as an MDP for which
established theory exists, including regularity conditions that can ensure the well-posedness of the problem.
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Algorithm 1 Quasi-Gradient-Descent Algorithm
1: initialize: κ, γ(0), γ(1),ε
2: while γ(j+1) 6= γ(j) do
3: γ̃(j)← γ(j)

4: for i= 1 : I do
5: while

∣∣∇Ci(γ̃(j))
∣∣> ε do

6: V (j)← γ̃(j)

7: γ̃
(j)
i ←max

{
V (j)−κ∇Ci(V (j)),0.02

}
. Maximum ensures positiveness.

8: κ←

∣∣∣(V (j)
i
−γ̃(j)

i

)
(∇Ci(V (j))−∇Ci(γ̃(j)))

∣∣∣
(∇Ci(V (j))−∇Ci(γ̃(j)))2

9: end while
10: end for
11: γ(j+1)←{γ̃(j)

1 , . . . , γ̃
(j)
I }

12: end while

replication, the confidence interval of the desired output variable can be computed, and the iteration
can be stopped when the width of the confidence interval falls below a predetermined threshold chosen
to be small enough to provide sufficient accuracy.

The proposed procedure thus consists of two main components: an analytical component and a
simulation-based evaluation component. The analytical component, developed through Sections 4–6,
involves a nominal model, an uncertainty set, and an efficient approach for computing candidate control
rules. The simulation-based evaluation component assesses the performance of these candidate control
rules in a high-fidelity environment and aims to identify the rule with the lowest long-run average cost
based on simulation outputs. Compared to a pure simulation-based optimization method, our proposed
method offers two key advantages: (i) The analytical component provides a clear set of control rules
as input for the simulation-based evaluation, giving the simulation step a specific objective, whereas a
direct simulation-based optimization may lack a clear focus on candidate policies. (ii) The control rules
generated by the analytical component possess interpretable structural properties, providing insights
into the underlying mechanisms that are hard to obtain from a pure simulation-based approach.

9. Numerical Studies
This section presents various numerical studies. Throughout this section, by mentioning the solution
to the SDG, we mean the solution to the workload problem. In §9.1, we compare the solution obtained
from the original penalty problem with that from the SDG. In §9.2, we present examples exposing
the “value of robustness.” In §9.3, we compare the optimal cost attained using the actual demand
model (assuming the actual demand model is known to the decision-maker) with the cost attained by
the best policy identified.
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9.1. Solution Comparison Between the Penalty Problem and the SDG
In this subsection, we numerically solve both the original penalty problem and the corresponding
SDG and compare their solutions to demonstrate the accuracy and reliability of the heavy-traffic
approximation. For the SDG, we compute its solution based on (26)–(27). We provide implementation
details in §EC.3. For the original penalty problem, whose state-descriptor can be found in §EC.1,
we adopt the “strategy iteration” approach. In each iteration, we fix the strategy of one player and
compute the best response of the opponent in the resulting one-player game, resulting in an MDP,
which we solve via standard value iteration. We then improve the strategy we originally fixed based
on the response of the opponent. As an initialization, we solve the nominal model, which assumes that
all arrival rates are exactly equal to their nominal values, hence no participation from nature, allowing
us to obtain a strategy for the decision-maker to start with. While we do not intend to establish a
formal theory guaranteeing the convergence of the strategy iteration algorithm, our experiments with
numerous instances suggest that the algorithm shows quick convergence.

We consider a two-class model with the following parameters: λ̄1 = 30, λ̄2 = 40, µ1 = 60, and µ2 = 80.
The cost data includes fixed outsourcing costs L1 = 5 and L2 = 15, proportional outsourcing costs
`1 = `2 = 1.0, and quadratic holding cost rates a1 = 0.4 and a2 = 0.5. Figure 1 illustrates the optimal
sequencing rules under Rényi divergence with α= 1/2. For the original problem, the decision-maker
would prioritize class 1 (resp. class 2) when the system is in states represented by a blue circle (resp. a
green square). For the SDG, the decision-maker would prioritize class 2 (resp. class 1) if the state is
above (resp. below) the gray line. The result shows that the sequencing rule derived from the SDG is
reasonably close to that obtained from the original penalty problem.

(a) Class 1 is in service (b) Class 2 is in service
Figure 1 Sequencing strategies derived from the penalty problem and the SDG with γ1 = γ2 = 30 when α= 1/2
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(a) Class 1 is in service (b) Class 2 is in service
Figure 2 Outsourcing strategies derived from the penalty problem and the SDG with γ1 = γ2 = 30 when α= 1/2

Results from Figure 2 pertain to outsourcing. For the original penalty problem, the blue squares
represent the states where product 1 should be outsourced, whereas the orange squares represent
the states where product 2 should be outsourced. Each horizontal or vertical arrow in the figures
connects the “origin” (the state right before outsourcing) and the “destination” (the state right after
outsourcing) associated with an outsourcing operation. The decision-maker is inclined to outsource
orders of class 1, unless queue 2 becomes exceedingly large, which is in alignment with the control
strategy prescribed by the SDG. The green lines represent the outsourcing thresholds, q1 and s1,
derived from the solution to the SDG and indicate that the decision-maker should always outsource
product 1. Hence, we can conclude that the outsourcing rule derived from the SDG is reasonably
close to that obtained from the penalty problem.

In §EC.4.1, we present an additional example involving KL divergence (α= 1). Therein, we also
compare the long-run average cost generated by the original penalty problem (ηexact) and that from
the SDG (ηSDG) under various parameter settings. Those results show that the long-run average costs
derived from the SDG are very close to the values attained from the original penalty problem, further
validating the reliability of our approximation scheme.

9.2. Exposing the Value of Robustness
Here, we showcase the importance of incorporating robustness into decision-making. In §9.2.1, we
analyze a system where the demand rate of each product follows an auto-regressive integrated moving
average (ARIMA) model. In §9.2.2, we consider a system where the demand rate of each product
follows a continuous-time Markov chain (CTMC). Simulations are conducted over a time interval
of 2,000 for the stochastic system. In order to estimate the performance of the system, we test the
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initial warm-up periods with T1 = 50 and T2 = 100. After comparing the statistical estimates of the
long-run average simulated cost, we adopt T2 = 100 as the warm-up period. In §EC.9, we also provide
evidence demonstrating that setting the warm-up period to 100 is sufficiently long to guarantee
reliable performance. In addition, to determine the appropriate number of replications, we set the
desired width of the confidence interval to 0.2. After conducting experiments, we observed that each
example requires approximately 40 replications to achieve the desired width of the confidence interval,
with an average simulation time per replication of less than 1 second.

9.2.1. ARIMA Intensity We demonstrate the simulated average cost Ĉ(γ), assuming a real-
world demand model in which the demand rate of each product follows a non-homogeneous Poisson
process with an ARIMA model for intensity. We study a two-class MTO system with the following
parameters: λ̄1 = 80, λ̄2 = 60, µ1 = 100, and µ2 = 300. The cost data includes outsourcing costs
L1 = 0.5,L2 = 0.8, `1 = `2 = 0.2, and quadratic holding cost rates a1 = 0.01 and a2 = 0.02. In addition,
for both products, we set the two “ARLags” to 0.8 and −0.8 respectively, the MA error coefficient to
0.4 and the variance to 100.

(a) α= 3 (b) α= 1
Figure 3 Quasi-gradient-descent algorithm for simulations with ARIMA intensity

The quadratic holding costs induce a queue-ratio type sequencing rule: if a1µ1Q1 > a2µ2Q2, priority
should be given to producing product 1. Conversely, if the inequality is reversed, priority should
be given to producing product 2. For the outsourcing rule, we find that in this example, we should
always outsource product 1 because η1 < η2 for all pairs of (γ1, γ2). Details of optimal control band
parameters (q1, s1) for different pairs of (γ1, γ2) can be found in Table EC.2. Figure 3 depicts the
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results of our algorithm, with Ĉ(γ) presented under both Rényi (α= 3) and KL divergence. The black
arrows indicate each step taken during the inner iterations, while the blue arrows correspond to the
final step of each inner iteration. The orange arrow denotes the final step of the whole algorithm,
while the termination point is marked with an orange circle, indicating the optimal value of γ and
the associated simulated cost. It is worth noting that when γ1 and γ2 are very large (thus, 1/γ1 and
1/γ2 are very small), the corresponding control rule can be viewed as one that completely ignores
possible model errors. This implies that the difference between the “limiting value” of each plot and
the minimum value on that plot can be seen as the value of robustness. For instance, for α= 3, the
value of robustness is approximately 2.5174− 2.3879 = 0.1295, which is around 5.42% better than
completely ignoring model errors. Similarly, for α= 1, the value of robustness is approximately 0.0859,
which is roughly 3.54% better than ignoring model errors. The comparison between the two values
of robustness suggests that a flexible α can lead to cost savings. Table EC.3 in §EC.4.2 displays
confidence intervals derived from simulations of the point estimates in this example. In general, we find
that our quasi-gradient-descent algorithm is capable of locating the minimum value. This minimum
value closely corresponds to the lowest cost presented in Table EC.3.

9.2.2. CTMC Intensity We now explore an arrival model in which the demand rate for each
order adheres to a non-homogeneous Poisson process, with the intensity represented by a CTMC.
Specifically, for each product, the arrival intensity is modeled as a CTMC with two distinct states, λ̃i
and λ̂i. The demand rate λ̃i corresponds to an optimistic scenario, whereas λ̂i represents a pessimistic
scenario. The nominal demand λ̄i is computed as the weighted sum of the two demand rates. The
system parameters are the same as described in §9.2.1. In the CTMC, each state’s sojourn time is
exponentially distributed at a rate of 10. We further set λ̃1 = 150 and λ̃2 = 110, while λ̂1 = λ̂2 = 10.
Unlike in §9.2.1, we purposely amplify the fluctuations of real-world demand rates beyond what
heavy-traffic scaling would entail. This deliberate choice aims to showcase the versatility of our
framework in different operating regimes. Although we could have set the parameters to yield moderate
fluctuations, thereby adhering closely to heavy-traffic scaling requirements, as will be demonstrated
numerically in §9.3, our proposed approach remains effective even when confronted with substantial
fluctuations in real-world demand rates.

In this example, the optimal decision rules (sequencing and outsourcing) are also the same as in the
previous example. The path taken by the algorithm to locate the minimum value is illustrated in Figure
4. The value of robustness for α= 3 is approximately 0.7608, which represents a 9.07% improvement
over fully ignoring model errors. For α= 1, the value of robustness is approximately 0.5137, which is
approximately 5.99% better than ignoring model errors. Again, these results demonstrate that the
flexibility offered by α can result in additional cost savings compared to using KL divergence alone.
Table EC.4 provides confidence intervals obtained from all computer simulations.
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(a) α= 3 (b) α= 1
Figure 4 Quasi-gradient-descent algorithm for simulations with CTMC intensity

The main takeaway from Figures 3 and 4 is that employing a robust control formulation that
accounts for model errors can result in significant cost savings. In the presence of model simplification,
following the policy based on the nominal model, thereby completely ignoring model errors, can impair
system performance. On the other hand, a too large uncertainty set overemphasizes the worst-case
scenario, producing an excessively conservative solution that does not have good performance either.
An appropriate choice of the uncertainty set can safeguard against model errors without generating
overly conservative solutions.

9.3. Cost Comparison Between Actual and Robust Models
We next compare the cost of the “best” robust control policy, denoted by Ĉ(γ?), with the actual
optimal cost C? obtained by conducting optimization based on the true model. For the true model, we
use a model setting similar to the one outlined in §9.2.2 (CTMC intensity). To determine the optimal
cost C?, we must solve an MDP, and we do it through value iteration. However, solving this problem
with value iteration is computationally intensive, as the two-class example results in a five-dimensional
MDP, including the two queue lengths, the index of the class being served, and the current arrival
rates of the two classes. Therefore, we opt to address a single-class problem instead.

We set λ̄= µ= 100 and consider the following cost parameters: outsourcing parameters L= 0.5, `=
0.1, and quadratic holding cost rate a= 0.01. In the CTMC, each state’s sojourn time is exponentially
distributed with a rate of 2.5. Additionally, we set λ̃= 150 and λ̂= 50. In Figure 5, the black straight
line at the bottom denotes the actual optimal cost C?, obtained by solving the true model through
value iteration. In fact, in this example, C? = ηexact = 3.717. The blue curve illustrates the long-run
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Figure 5 Actual cost and cost obtained from the “best” robust model with λ̃= 150 and λ̂= 50

average robust cost Ĉ(γ) for varying γ. Remarkably, the difference between Ĉ(γ?) and C? is only
2.45%. By ignoring model errors, the decision-maker would incur a cost that is 6.95% higher than
C?. Therefore, our robust control formulation, accompanied by the parameter-determining method,
delivers a noticeable value. More detailed information about the outsourcing thresholds (q, s) and the
simulated costs in the above example can be found in §EC.4.3.

10. Concluding Remarks
We have considered robust control for a multiclass MTO manufacturing system with an outsourcing
mechanism. Our main formulation takes the form of a two-player zero-sum game in which nature, as a
malevolent second player, serves to guard against the adverse impact of deliberate model simplification.
Considering the system to operate in a suitable operating regime, we have devised an approximating
problem that admits a one-dimensional simplification. Combining the decision-maker’s strategy from
solving the game with simulation programs enables us to develop a practical procedure capable of
generating effective joint sequencing and outsourcing rules.

There are several limitations to this study. First, our solution approach is intended for critically
loaded systems. Therefore, the analysis, results, and insights primarily apply to systems that fulfill
the critical-loading assumption. Analyzing and exploring solutions for underloaded (resp. overloaded)
systems, where nominal demand significantly falls short (resp. exceeds) capacity, would be valuable.
Second, we do not consider the possibility of learning to update or refine the uncertainty set based on
new information as the system evolves over time. Combining online learning with a robust control
framework can be valuable, as exemplified by Kim (2016). Third, it is unclear to what extent our
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solution framework remains effective for more complex systems that are potentially difficult to simulate.
For example, simulating a system with many potentially heterogeneous servers would likely pose
practical challenges compared to the system considered in this paper. Further investigation into this
matter would be worthwhile.

There are multiple avenues for future research. For example, it would be interesting to explore how
our approach to achieving “model simplifications” fares in comparison to alternative methods, such
as the “state aggregation” method developed by Nadar et al. (2018) to optimize assembly-to-order
systems. It would deliver important practical values if we were to actually implement the proposed
sequencing and outsourcing policies in a natural test bed to see if they are able to improve upon
current practices adopted by MTO manufacturing systems.

References
Altman E (1999) Constrained Markov Decision Processes: Stochastic Modeling (Routledge).

Ata B (2006) Dynamic control of a multiclass queue with thin arrival streams. Operations Research 54(5):876–
892.

Ata B, Barjesteh N (2023) An approximate analysis of dynamic pricing, outsourcing, and scheduling policies
for a multiclass make-to-stock queue in the heavy traffic regime. Operations Research 71(1):341–357.

Ata B, Harrison J, Shepp L (2005) Drift rate control of a brownian processing system. The Annals of Applied
Probability 15(2):1145–1160.

Ata B, Olsen TL (2013) Congestion-based leadtime quotation and pricing for revenue maximization with
heterogeneous customers. Queueing Systems 73(1):35–78.

Bandi C, Trichakis N, Vayanos P (2019) Robust multiclass queuing theory for wait time estimation in resource
allocation systems. Management Science 65(1):152–187.

Bertsekas D (1995) Dynamic Programming and Optimal Control: Volume 2 (Athena Scientific).

Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM review
53(3):464–501.

Bhatnagar S, Borkar VS (1995) A convex analytic framework for ergodic control of semi-Markov processes.
Mathematics of Operations Research 20(4):923–936.

Bradley JR, Glynn PW (2002) Managing capacity and inventory jointly in manufacturing systems. Management
Science 48(2):273–288.

Cao P, Yao D (2018) Optimal drift rate control and impulse control for a stochastic inventory/production
system. SIAM Journal on Control and Optimization 56(3):1856–1883.
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e-companion to Author: ec1

E-Companion
The e-companion is organized as follows: In §EC.1, we provide the proof of Proposition 2. In

§EC.2, we prove other main results. In §EC.3, we describe our numerical scheme used for solving
the optimality equation. We supply additional data on the numerical experiments in §EC.4 and
present the numerical results concerning positive setup times in §EC.5, along with results for a 4-class
example in §EC.6. In §EC.7, we present numerical results focusing on multi-server systems. In §EC.8,
we present a few direct extensions to the model introduced in the main paper, including treatments
for slightly overloaded or underloaded systems. The discussion regarding the selection of warm-up
periods is provided in §EC.9. We offer some high-level guidance on the choice of the value of α in
§EC.10 and provide proofs for some auxiliary results in §EC.11.

EC.1. Proof of Proposition 2
Throughout the proof, we will treat λ rather than θ as nature’s decision process. This is done without
loss of generality since the two quantities determine each other. Also, note that nature has a bounded
action space given as Λ := {λ∈RI : λi ∈ [λ̄i(1 + ai), λ̄i(1 + bi)]}. The proof involves three major steps.
Step 1 takes the decision-maker’s strategy as given and reformulates nature’s decision problem as
a discrete-time CMDP. Step 2 establishes a Lagrange multiplier theorem for the CMDP. Step 3
establishes the desired connection between the constraint problem and the penalty problem.

Step 1: Let the decision-maker’s strategy be given and fixed. If λ is fixed, the system evolution
can be described by the stochastic process X(t) := (Q(t), J(t)), where Q(t) is the vector of queue
length processes and J(t) is a process taking values from {0,1, . . . , I}, with J(t) = j if a class j job is
in service at time t for j 6= 0 and J(t) = 0 if the server is idle at time t. Note that the decision-maker’s
strategy not only determines the state space of X, denoted as S, but also allows for the division of S
into two sets: S̃, which includes all the states that do not trigger outsourcing, and S̄, which includes
all the states that will trigger outsourcing. Clearly,

S̃ ∩ S̄ = ∅ and S̃ ∪ S̄ = S.

Moreover, for each x ∈ S̄, there is a pair (k̃(x), δ̃(x)) stating that whenever X reaches the state x,
outsource δ̃(x) units of product k̃(x). If denoting by ei ∈RI the unit vector whose ith component is
one and remaining components zero, then for each x := (q, j)∈ S̃, we can define two sets:

χ0(x) := {i : (q+ ei, j) 6∈ S̄} and χ1(x) := {i : (q+ ei, j)∈ S̄}.

Intuitively, χ0(x) collects the indices of job classes for which a new arrival will not trigger outsourcing,
whereas χ1(x) gathers the indices of job classes for which a new arrival will trigger outsourcing, given



ec2 e-companion to Author:

that the current system state is x. Henceforth, we will simply write χ0 and χ1 in place of χ0(x) and
χ1(x), respectively, whenever the dependence on x is clear from the context.

Using the standard uniformization technique, we can construct a discrete-time equivalent of the
continuous-time process X, denoted as X(n) = (Q(n), J(n)). It is worth noting that since outsourcing
happens instantaneously, the state space of {X(n)} is effectively S̃. To spell out the transition law of
this discrete-time, suppose X(n) = (q, j) for j 6= 0. Then (i) with probability λi(n)

ν
, X(n+1) = (q+ei, j)

for i∈ χ0 and X(n+1) = (q+ei− δ̃(q+ei, j)ek̃(q+ei,j), j) for i∈ χ1; (ii) with probability µj
ν

, X(n+1) =
(q− ej , j̃(q− ej)), where j̃ is determined by the specific sequencing rule chosen by the decision-maker;
and (iii) with probability 1− µj+

∑I

i=1 λi(n)
ν

, X(n+ 1) = (q, j). In the above, the constant ν can be
chosen arbitrarily as long as it is large enough to make the aforementioned probabilities well-defined;
the existence of such a ν is ensured by the boundedness of nature’s action space. Also, keep in mind
that λi(n) are nature’s decision variables at stage n.

It is straightforward to check that the discrete-time system satisfies the so-called Weak Accessibility
condition (Definition 4.2.2 in Bertsekas (1995)). Thus, if ignoring the model-error constraints for now,
the Bellman equation characterizing nature’s best response admits the following form (Proposition
4.2.3. in Bertsekas (1995)):

η∗

ν
+φ∗(q, j) = max

λ∈Λ

c(q) +
∑
i∈χ0

λi
ν
φ∗(q+ ei, j) +

∑
i∈χ1

λi
ν
φ∗
(
q+ ei− δ̃(q+ ei, j)ek̃(q+ei,j), j

)

+ µj
ν
φ∗(q− ej , j̃(q− ej))1{j 6=0}+

(
1− µj1{j 6=0}+

∑I
i=1 λi

ν

)
φ∗(q, j)

+
∑
i∈χ1

λi
ν

[
Lk̃(q+ei,j) + `k̃(q+ei,j)δ̃(q+ ei, j)

] for all (q, j)∈ S̃,

where c(q) := 1
ν

∑
i ci(qi). The Bellman equation implies that the outsourcing cost can be absorbed

into the unit cost, yielding an effective unit cost function:

c̃(x,λ) := c(q) +
∑
i∈χ1

λi
ν

[
Lk̃(q+ei,j) + `k̃(q+ei,j)δ̃(q+ ei, j)

]
,

where x= (q, j). Therefore, nature’s problem can be cast into a CMDP that seeks λ to maximize

Cea(X,λ) := lim sup
m→∞

1
m
E
[
m∑
n=1

c̃(X(n), λ(n))
]

subject to

Di(λ) := lim sup
m→∞

1
m
E
[
m∑
n=1

dαi (λ(n))
]
≤ βi, i= 1, . . . , I, (EC.1)

where

dαi (λ) :=


λ̄i

ν(α−1)

{(
λi
λ̄i

)α
−α

(
λi−λ̄i
λ̄i

)
− 1
}

for α 6= 1,
1
ν

{
λi ln

(
λi
λ̄i

)
−λi + λ̄i

}
for α= 1.
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Hereinafter, we will refer to D as the set containing all admissible λ satisfying equation (EC.1). We
will also use ΦS and ΦD to represent the set of stationary λ and the set of stationary deterministic λ.

Step 2: Recall that β and γ are I-dimensional vectors of real numbers. Now, write D(λ) := (Di(λ)).
Our main task is to establish

max
λ∈D

Cea(X,λ) = max
λ∈ΦS

min
γ<0

Jγea(X,λ) = min
γ<0

max
λ∈ΦS

Jγea(X,λ) = min
γ<0

max
λ∈ΦD

Jγea(X,λ), (EC.2)

where Jγea(X,λ) :=Cea(X,λ)−〈γ,D(λ)−β〉. Identity (EC.2) will follow from Theorem 12.7 in (Altman
1999, chapter 12), if one can verify two conditions, referred to by Altman (1999) as the moment
condition and the boundedness condition. In particular, the moment condition, which corresponds to
“the near-monotonic case” in (Feinberg and Shwartz 2002, chapter 11) ensures that ΦS is a dominating
class among all admissible λ, justifying the first equality in (EC.2). The second equality in (EC.2)
follows from that ΦS is a convex set; see, e.g, Lemma 11.2 in (Feinberg and Shwartz 2002, chapter 11).
The last equality in (EC.2), which also appears in part (iii) of Theorem 12.7 in (Altman 1999,
chapter 12), holds because the relaxed (unconstrained) problem maxλ∈ΦD J

γ
ea(X,λ) can be handled

by solving a system of dynamic programming equations, from which one recovers a deterministic
policy. We next state and verify the two conditions in turn. (Note that the statements given below
are slightly different from but essentially the same as those in Altman (1999), because Altman (1999)
considers a minimization problem whereas nature faces a maximization problem.)

Condition 1 (Moment Condition; Condition 11.21 in Altman (1999)): For all z̃ ∈R,

the set
{
x∈ S̃ : max

λ∈Λ
c̃(x,λ)> z̃

}
is finite. (EC.3)

Since S̃ is a finite set, (EC.3) is trivially satisfied.

Condition 2 (Boundedness Condition; Condition 11.1 in Altman (1999)): c̃ is bounded from above
and for each i= 1,2, · · · I, dαi is bounded from below.

Since S̃ is a finite set and the demand rate of each product is restricted to a bounded region, we
know that c̃ is bounded from above. In addition, we see that for all α,

min
λ∈Λ

dαi (λ) = dαi (λ̄) = 0, (EC.4)

from which we can conclude each dαi is bounded from below.
Having verified the two conditions, by Theorem 12.7 in Altman (1999) we conclude that (EC.2)

holds (with the decision-maker’s strategy being fixed).
Step 3: It is easy to see that the discrete-time equivalent of the constraint problem can be

described as one where the decision-maker seeks (T,Ψ) to minimize maxλ∈DCea(X,λ), where, to
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avoid introducing new notation, we continue to use (T,Ψ) to represent the decision-maker’s strategy.
Similarly, the discrete-time equivalent of the penalty problem can be described as one where the
decision-maker seeks (T,Ψ) to minimize

max
λ∈ΦD

Cea(X,λ)−〈γ,D(λ)〉.

With a slight abuse of notation, let the optimal values of the discrete-time constraint problem and
penalty problem be denoted by C?

c (β) and C?
p (γ), respectively. We have

C?
c (β) := min

(T,Ψ)
max
λ∈D

Cea(X,λ) (a)= min
(T,Ψ)

min
γ<0

max
λ∈ΦD

Jγea(X,λ)

= min
γ<0

min
(T,Ψ)

max
λ∈ΦD

Jγea(X,λ) (b)=: min
γ<0

[
C?
p (γ) + 〈β, γ〉

]
,

where step (a) is due to (EC.2) and step (b) follows by the definition of C?
p (γ).

EC.2. Proofs of Other Main Results
Proof of Proposition 1. The result for α= 1 has been effectively proved by Lim and Shanthikumar

(2007), so we restrict attention to cases where α 6= 1. Let α̃ := α− 1. A direct calculation gives

ψα̃i (t) = exp
{
α̃

∫ t

0
ln(1 + θi(u))dAi(u)

}
· exp

{
−α̃

∫ t

0
λ̄iθi(u)du

}
. (EC.5)

Denote by u := {ui} a partition of [0, t], such that 0 = u0 <u1 < · · ·<um = t. We get

exp
{
α̃

∫ t

0
ln(1 + θi(u))dAi(u)

}
= lim exp

{∑
k

α̃ ln(1 + θi(uk))(Ai(uk+1)−Ai(uk))
}
, (EC.6)

where the limit is in probability and taken as ∆ := maxk |uk+1 − uk| → 0. By our hypothesis, θi is
bounded, so we can apply the dominated convergence theorem to conclude that the expectation of
left-hand side of (EC.6) with respect to Qi equals limEQi [K(u)], where

K(u) := exp
{∑

k

α̃ ln(1 + θi(uk))(Ai(uk+1)−Ai(uk))
}
.

Here, the limit is again taken as ∆ := maxk |uk+1−uk| → 0. Now, fixing a partition u, we have

EQi [K(u)] (a)=
∏
k

EQi [exp{α̃ ln(1 + θi(uk))(Ai(uk+1)−Ai(uk))}]

(b)=
∏
k

exp
{
λi(uk)(uk+1−uk)(eα̃ ln(1+θi(uk))− 1)

}
+ o(∆)

= exp
{∑

k

λ̄i(1 + θi(uk))((1 + θi(uk))α̃− 1)(uk+1−uk)
}

+ o(∆),

(EC.7)

where step (a) is due to the fact that increments are conditionally independent given θi, and step (b)
follows from the piece-wise constant approximation of a non-homogeneous Poisson process plus using
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the moment generating function for a Poisson random variable. Note that the piece-wise constant

approximation is valid due to the local integrability of θi. In light of (EC.7),

EQi
[
exp

{
α̃

∫ t

0
ln(1 + θi(u))dAi(u)

}]
= exp

{∫ t

0
λ̄i [(1 + θi(u))α− (1 + θi(u))] du

}
.

Taking expectation of (EC.5) with respect to Qi and substituting for the preceding expression yields

Rαi (t) := 1
α̃

lnEQi
[
ψi(t)α̃

]
= 1
α̃

{∫ t

0
λ̄i [(1 + θi(u))α− (1 + θi(u))] du− α̃

∫ t

0
λ̄iθi(u)du

}
,

which, after further simplification, leads to the desired result. �

Proof of Proposition 3. If removing nature from consideration, the line of arguments used to

establish the desired equivalence is by now standard; see, e.g., Çelik and Maglaras (2008), Rubino and

Ata (2009), Ata and Barjesteh (2023). Thus, a unique aspect of the current proof is dealing with the

role of nature. At a high level, we need to argue that an admissible control, along with nature’s best

response to it, in one formulation can translate into an admissible control, as well as nature’s best

response to it, in the other formulation, and the translation does not lead to a worse performance

from the minimizing player’s perspective.

Suppose that (Ŷ , Ψ̂) is an admissible control for the SDG (12)–(15) with Brownian motions Ẑi
and state process Q̂i and that θ is nature’s best response to (Ŷ , Ψ̂). Set W =

∑
imiQ̂i. Then, by the

definition of h and our construction of W , we have
∫ t

0
h(W (u))du≤

∫ t

0

I∑
i=1

ci(Q̂i(u))du for all t≥ 0. (EC.8)

Moreover, (U, Ψ̃) given by (17) and (18), along with Brownian motion B and perturbation ζ defined

by (17), fulfill (21)–(23). We claim that

lim inf
t→∞

1
t
E
[∫ t

0
r?(ζ(u))du

]
= lim inf

t→∞

1
t
E
[∫ t

0
r(θ(u))du

]
. (EC.9)

If not, then the left-hand side of (EC.9) is strictly less than the right-hand side. Hence, if we let

θ′ := {θ′(t); t≥ 0} be such that θ′(t) is the minimizer of the right-hand side of (19) with z therein

replaced with ζ(t), then

lim inf
t→∞

1
t
E
[∫ t

0
r(θ′(u))du

]
= lim inf

t→∞

1
t
E
[∫ t

0
r?(ζ(u))du

]
< lim inf

t→∞

1
t
E
[∫ t

0
r(θ(u))du

]
.

This, however, contradicts the hypothesis that θ is nature’s best response to (Ŷ , Ψ̂). Therefore, we

have (EC.9). In view of (EC.8) and (EC.9), to establish the first half of the proposition, we also need
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to argue that ζ =
∑I
i=1 ρiθi(t) is nature’s best response to (U, Ψ̃). Suppose not. Then there exists

some ζ ′ such that

lim inf
t→∞

1
t
E
[∫ t

0
r?(ζ ′(u))du

]
< lim inf

t→∞

1
t
E
[∫ t

0
r?(ζ(u))du

]
.

But if we let, by slightly abusing the notation, θ′ := {θ′(t); t≥ 0} be such that θ′(t) is the minimizer
of the right-hand side of (19) with z therein replaced with ζ ′(t), then

lim inf
t→∞

1
t
E
[∫ t

0
r(θ′(u))du

]
= lim inf

t→∞

1
t
E
[∫ t

0
r?(ζ ′(u))du

]
< lim inf

t→∞

1
t
E
[∫ t

0
r(θ(u))du

]
.

This again contradicts the hypothesis that θ is nature’s best response to (Ŷ , Ψ̂).
Suppose that (U, Ψ̃) is an admissible control for the workload problem (20)–(23) with Brownian

motion B and state process W and that ζ is nature’s best response to (U, Ψ̃). Then, there exist
Brownian motions Ẑi such that B(t) =

∑
imiẐi(t) for all t. Let Q̂i be such that Q̂i(t) is the minimizer

of the right-hand side of (2) with w therein replaced with W (t) for all t≥ 0. Likewise, let θ be such
that θ(t) is the minimizer of the right-hand side of (19) with z therein replaced with ζ(t) for all t≥ 0.
We can then construct Ψ̂ by setting ξ̂i(k) = µiξ̃(k) for all k and i and control Ŷi via

Ŷi(t) =mi

Q̂i(t)− Q̂i(0)− Ẑi(t)−
∫ t

0
λ̄iθi(u)du+

Ni(t)∑
k=0

ξ̂i(k)


for all t≥ 0 and i= 1, . . . , I. It is straightforward to verify that (Ŷ , Ψ̂), along with Brownian motions
Ẑi and the perturbation process θ, fulfill (12)–(14). Note that by construction, the value of

lim sup
t→∞

1
t
E

∫ t

0

(
I∑
i=1

ci(Q̂i(u))− r(θ(u))
)

du+
I∑
i=1

Ni(t)∑
k=0

φi(ξ̂i(k))


coincides with that of (20). Therefore, to finish the proof for the second half of the proposition, we
need to argue that θ is nature’s best response to (Ŷ , Ψ̂). Suppose not. Then there exists some θ′

(again by overloading the notation) such that

Q̂i(t) = Q̂i(0) + Ẑi(t) +
∫ t

0
λ̄iθ
′
i(u)du+µiŶi(t)−

Ni(t)∑
k=0

ξ̂i(k), i= 1, . . . , I, (EC.10)

where Q̂, Ẑi, Ŷi, and ξ̂i are the same as constructed above, and

lim inf
t→∞

1
t
E
[∫ t

0
r(θ′(u))du

]
< lim inf

t→∞

1
t
E
[∫ t

0
r(θ(u))du

]
= lim inf

t→∞

1
t
E
[∫ t

0
r?(ζ(u))du

]
. (EC.11)

Now, multiplying (EC.10) by mi, summing over all i, and rearranging terms, we obtain∫ t

0

I∑
i=1

ρiθ
′
i(u)du=W (t)−W (0)−B(t)−U(t) +

I∑
i=1

Ni(t)∑
k=0

ξ̃i(k)

=
∫ t

0
ζ(u)du for all t≥ 0.

(EC.12)

Equation (EC.12), in particular, implies that
∑I
i=1 ρiθ

′
i(t) = ζ(t) for almost every t. This, however,

contradicts the definition of r?. Thus, θ must be nature’s best response to (Ŷ , Ψ̂). �



e-companion to Author: ec7

Proof of Proposition 5. To begin, we introduce the following supporting lemmas that are critical
for proving this proposition. Below, unless stated otherwise, π′(w,η) is used to denote the first-order
partial derivative of π with respect to its first argument. Lemma EC.1 asserts non-negativity and
Lipschitz continuity of the function g.

Lemma EC.1. g(x) is non-negative and Lipschitz continuous in x∈R, i.e., for any x1 and x2, we
have

|g(x1)− g(x2)| ≤M |x1−x2| . (EC.13)

Note that the properties claimed by Lemma EC.1 provide the standard (sufficient) condition for
equations like (29) to have a unique solution (see, for example, chapter 3 in David et al. (2018)).

Lemma EC.2. (i) For any η ∈R, the ordinary differential equation (29) has a unique continuously
differentiable solution π(w,η). (ii) π(w,η) is continuous in η ∈ R, and π′(w,η) is continuous in
w ∈R+, and η ∈R, respectively.

Lemma EC.3. For fixed w > 0, π(w,η) is strictly increasing in η ∈R and

lim
η→±∞

π(w,η) =±∞. (EC.14)

Lemma EC.4. There exists an upper bound η̄ with η̄ > 0 such that the following results hold:
(i) If η≤ 0, then π(w,η) is strictly decreasing in w ∈ [0,∞) and

lim
w→∞

π(w,η) =−∞. (EC.15)

(ii) If η≥ η̄, then π(w,η) is strictly increasing in w ∈ [0,∞) and

lim
w→∞

π(w,η) =∞. (EC.16)

(iii) If 0< η < η̄, then there exists a unique number w?(η) such that π(w,η) is strictly increasing in
[0,w?(η)] and strictly decreasing in [w?(η),∞), where

w?(η) := inf {w≥ 0 : π′(w,η)≤ 0} .

Furthermore, limw→∞ π(w,η) =−∞.

Lemma EC.4 divides the value of η into three segments, separated by two cut-off points: 0 and η̄.
In particular, the presence of the cut-off point 0 is due to the condition g(0) = 0. Mathematically, if
g(0) 6= 0, then the cut-off point 0 should be modified to g(0). We can then use the previous results to
find the unique parameters qi and si for each i. In Lemma EC.5 we show that there exist unique qi,
si and ηi with ηi ∈ (0, η̄) and 0< qi < si such that
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π(qi, ηi) = π(si, ηi) = ˜̀
i, (EC.17)

and ∫ si

qi

[
π(w,ηi)− ˜̀

i

]
dw=Li. (EC.18)

Lemma EC.5. (i) There exists a finite number η‡ ∈ (0, η̄) such that for any η ∈ (η‡, η̄), there exist
two unique numbers q(η) and s(η) with 0< q(η)<w?(η)< s(η) satisfying

π(q(η), η) = π(s(η), η) = ˜̀
i.

(ii) There exists a unique finite number ηi ∈ (η‡, η̄) such that

f̃(ηi) =Li, (EC.19)

where f̃(η) :=
∫∞

0 (π(w,η)− ˜̀
i)+dw is strictly increasing in η ∈ (η‡, η̄).

Remark EC.1. Letting qi = q(ηi) and si = s(ηi), Lemma EC.5 directly implies (EC.17) and
(EC.18).

The proof of Lemmas EC.1–EC.5 can be found in §EC.11. We are now going to prove part (i) of
Proposition 5. Let πi = π(w,ηi). Recall that πi is a continuously differentiable solution to (29) with
the initial condition (30), so (EC.17) and (EC.18) ensure the boundary condition (31). Also from
Lemma EC.4(iii) we know that 0< qi < si <∞. Thus we have completed the proof of part (i).

To prove part (ii) of the proposition, it suffices to show

1
2σ

2v′′(w) + g(v′(w)) +h(w)− ηi
{

= 0 for w ∈ (0, si)
≥ 0 for w≥ si

and (EC.20)

inf
0≤z≤w

{
v(w− z) + ˜̀

iz+Li
}
− v(w)

{
≥ 0 for w ∈ (0, si)
= 0 for w≥ si

(EC.21)

for any function v defined as in the proposition. By the definition of v, we know that

1
2σ

2v′′(w) + g(v′(w)) +h(w)− ηi = 0 for w ∈ (0, si).

According to Lemma EC.4(iii) and Lemma EC.5, we can deduce that v′′(si−) = π′(si−)< 0. Hence,
for w≥ si, we have

1
2σ

2v′′(w) + g(v′(w)) +h(w)− ηi ≥
1
2σ

2v′′(si−) + g(˜̀
i) +h(si−)− ηi = 0.

This proves (EC.20). To show (EC.21), it suffices to establish the following equivalence:

sup
0≤y≤w

∫ w

y

[
v′(z)− ˜̀

i

]
dz
{
≤Li for w ∈ (0, si)
=Li for w≥ si
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which holds true by the definition of v and the fact that

π(w,ηi)


< ˜̀

i for w < qi
≥ ˜̀

i for w ∈ [qi, si]
< ˜̀

i for w > si

due to Lemma EC.4(iii) and Lemma EC.5. We thus complete the proof for part (ii) of the proposition.

Towards proving part (iii) of Proposition 5, consider an admissible control of the minimizing player

such that under this control

Ji(w) := max
ζ

lim sup
t→∞

1
t
Eζ
∫ t

0
h(W (u))du−

∫ t

0
r?(ζ(u))du+

Ni(t)∑
k=0

φ̃i(ξ̃i(k))
∣∣∣∣∣W (0) =w

<∞.
Moreover, consider a special drift-rate control ζ#(W ), defined as

ζ#(W ) := inf arg max
ζ

{v′(W )ζ − r?(ζ)} . (EC.22)

Clearly ζ#(·) is an adaptive control satisfying

g(v′(W )) + r?(ζ#(W ))− ζ#(W )v′(W ) = 0. (EC.23)

Let δi(k) := v(W (τi(k)))− v(W (τi(k)−)). From (32) it follows that v(y)− v(x)≤ φ̃i(y−x) for y > x,

and so

−δi(k)≤ φ̃i(W (τi(k)−)−W (τi(k))) = φ̃i(ξ̃i(k)) for k = 0,1,2, . . . . (EC.24)

Supposing that the maximizing player adopts ζ#(·), then applying the generalized Itô’s formula with

W (0) =w, we obtain, for t≥ 0,

v(W (t)) = v(w) +
∫ t

0

(
σ2

2 v
′′(W (u)) + ζ#(W (u))v′(W (u))

)
du

+σ

∫ t

0
v′(W (u))dB(u) +

Ni(t)∑
k=0

δi(k) + v′(0)U(t),

which, in turn, implies that

Ξ(t) :=
∫ t

0
h(W (u))du−

∫ t

0
r?(ζ#(W (u)))du+

Ni(t)∑
k=0

φ̃i(ξ̃i(k))

= ηit+ v(w)− v(W (t)) +σ

∫ t

0
v′(W (u))dB(u)

+
∫ t

0

(
σ2

2 v
′′(W (u)) + ζ#(W (u))v′(W (u)) +h(W (u))− r?(ζ#(W (u)))− ηi

)
du

+
Ni(t)∑
k=0

(
δi(k) + φ̃i(ξ̃i(k))

)
+ v′(0)U(t).
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Because (v, ηi) satisfies the optimality equation and noting (EC.23)–(EC.24), we obtain from the
preceding identity that

Ξ(t)≥ ηit+ v(w)− v(W (t)) +σ

∫ t

0
v′(W (u))dB(u). (EC.25)

Drawing upon our construction of v, it is clear that v′(w) is bounded in [0, `i]. Consequently, we can
deduce from Corollary 4.8 and Proposition 4.17 in Harrison (2013) that Eζ#

[∫ t
0 v
′(W (u))dB(u)

]
= 0.

It thus follows from (EC.25) that

1
t
Eζ

# [Ξ(t)]≥ ηi + 1
t
v(w)− 1

t
Eζ

# [v(W (t))]

≥ ηi + 1
t
v(w)− l

t
Eζ

# [W (t)]
(EC.26)

for some positive constant l, whose existence is guaranteed by the fact that v has bounded first-order
derivatives. On account of Assumption 1 and the boundedness of r?, by a slight abuse of notation, we
can deduce that

∞>Ji(w)≥ lim sup
t→∞

1
t
Eζ

#
[∫ t

0
h(W (u))du−

∫ t

0
r?(ζ(u))du

∣∣∣∣∣W (0) =w

]

≥C1 +C2 lim sup
t→∞

1
t
Eζ

#
[∫ t

0
W (u)du

]
for some C1 ∈R and C2 > 0. With this string of inequalities, we can conclude that

lim inf
t→∞

1
t
Eζ

# [W (t)] = 0. (EC.27)

To see this, suppose that lim inft→∞ 1
t
Eζ# [W (t)] > a > 0. Then there exists some t̄ such that

Eζ# [W (t)]> at/2 for all t≥ t̄. It follows that

lim sup
t→∞

1
t
Eζ

#
[∫ t

0
W (u)du

]
≥ lim sup

t→∞

1
t

∫ t

t̄

au

2 du=∞,

which is a contradiction. Hence, (EC.27) holds. Finally, taking the limsup on both sides of (EC.26)
by passing to the limit t→∞ and noting (EC.27), we find

Ji(w)≥ lim sup
t→∞

1
t
Eζ

# [Ξ(t)]≥ ηi,

as desired.
In the presence of the maximizing player, we still need to verify that ζ# is indeed the maximizer’s best

response given the decision-maker will commit to the control band policy (i, qi, si). For this purpose,
we can easily write down the Bellman equation for the maximizer’s problem: seek vm ∈ C2(0, si) and
ηm ∈R such that

max
ζ

{1
2σ

2v′′m(w) + ζv′m(w) +h(w)− r?(ζ)
}

= ηm, w ∈ (0, si),
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subject to the boundary conditions

v′m(0) = 0 and vm(si) = φ̃i(si− qi) + vm(qi).

Comparing these with (26) and (27), we immediately conclude that vm = v and ηm = ηi. Therefore,

the control rule ζ# defined by (EC.22) is the maximizer’s best response given the decision-maker

chooses to adopt the control band policy (i, qi, si).

Finally, noting that ηi is the long-run average cost when the decision-maker implements (i, qi, si)

and the maximizer employs the drift-rate control ζ# (cf. Proposition 4) completes the proof. �

Proof of Theorem 1. The proof of this theorem follows closely the steps in the proof of part (iii) in

Proposition 5. Thus, we only highlight the key differences. To start, let

J(w) := max
ζ

lim sup
t→∞

1
t
Eζ
∫ t

0
h(W (u))du−

∫ t

0
r?(ζ(u))du+

I∑
i=1

Ni(t)∑
k=0

φ̃i(ξ̃i(k))
∣∣∣∣∣W (0) =w

 ,
and define δi(k) in the same way as we did in the proof of Proposition 5. Now using (33), we conclude

that, for all i, v(y)− v(x)≤ φ̃i(y−x); thus for all k = 1,2, . . . and i= 1, . . . , I, we have

−δi(k)≤ φ̃i(ξ̃i(k)). (EC.28)

Next by applying the generalized Itô’s formula, we obtain, for t≥ 0,

Eζ [v(W (t))] = v(w) +Eζ
[∫ t

0

(
σ2

2 v
′′(W (u)) + ζ(u)v′(W (u))

)
du
]

+Eζ
 I∑
i=1

Ni(t)∑
k=0

δi(k)

 .
On substituting (EC.28) into above identity and using (33), we deduce

v(w)≤Eζ
[∫ t

0
(h(W (u))− r?(ζ(u))− ηi) du

]
+Eζ

 I∑
i=1

Ni(t)∑
k=0

φ̃i(ξ̃i(k))


+Eζ [v(W (t))] +Eζ

[∫ t

0
(g(v′(W (u))) + r?(ζ(u))− ζ(u)v′(W (u))) du

]
.

The rest of the proof proceeds in exactly the same fashion as the proof of Proposition 5. First, by

choosing ζ = ζ# with ζ# given as in (EC.22), one can formally show that ηi? ≤ J(w). Second, one can

easily argue that ζ# is the maximizer’s best response: when the decision-maker chooses (i?, qi? , si?),

the maximizer will follow ζ# and never deviate from it. The desired optimality of the control band

policy (i?, qi? , si?) then follows immediately from these two points plus the fact that the “lower bound”

ηi? is attained with the policy (i?, qi? , si?) as demonstrated by Proposition 5. �
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Proof of Proposition 6. We need to show that
1
2σ

2v′′(w) + g(v′(w)) +h(w)− ηi? ≥ 0 and (EC.29)

inf
0≤z≤w

[
v(w− z) + φ̃i(z)

]
− v(w)≥ 0 for all i (EC.30)

for any v defined as in the proposition. The verification for (EC.29) is very similar to that for (EC.20),
so we will only focus on proving (EC.30). To this end, it suffices to argue that the following holds:

sup
0≤y≤w

∫ w

y

[
v′(z)− ˜̀

i

]
dz ≤Li for all i. (EC.31)

Suppose (EC.31) does not hold. Then there exists some k such that

sup
0≤y≤w

∫ w

y

[
v′(z)− ˜̀

k

]
dz > Lk. (EC.32)

By our definition of v, the function graph of v′(·) coincides with that of π(·, ηi?) for w ∈ [0, s∗) and
overlaps with the horizontal line ˜̀∗ for w ∈ [s∗,∞). Moreover, by Lemma EC.4(iii), the function
graph of v′(·) crosses the horizontal line ˜̀∗ once before intersecting it at the coordinate (s∗, ˜̀∗) for the
second time. It follows from the same lemma that the function graph of v′(·) either does not intersect,
touches, or intersects twice with any horizontal line strictly above the horizontal line ˜̀∗. Because of
(EC.32) and the fact that ˜̀

k ≥ ˜̀∗, we must have

sup
0≤y≤w

∫ w

y

[
π(z, ηi?)− ˜̀

k

]
dz = sup

0≤y≤w

∫ w

y

[
v′(z)− ˜̀

k

]
dz > Lk. (EC.33)

By the definition of ˜̀∗, there cannot exist ˜̀
k < ˜̀∗. Figure EC.1 provides for a further graphical

justification of the equality in (EC.33). On the other hand, we know that

sup
0≤y≤w

∫ w

y

[
π(z, ηk)− ˜̀

k

]
dz =Lk. (EC.34)

In light of Lemma EC.3, we can deduce from (EC.33) and (EC.34) that ηk < ηi? . This, however,
reaches a contradiction given the definition of ηi? . Therefore, (EC.31) must be satisfied. The proof is
thus complete. �

Remark EC.2. Regarding the preceding proof, there is an alternative argument to prove ηk < ηi?

under the hypothesis (EC.32). The key is to note that (EC.33), in conjunction with EC.4(iii), implies
the existence of a new proportional cost parameter ˘̀> ˜̀

k such that∫ s

q

[
π(z, ηi?)− ˘̀

]
dz = sup

0≤y≤w

∫ w

y

[
π(z, ηi?)− ˘̀

]
dz =Lk,

where
q := inf

{
w≥ 0 : π(w,ηi?) = ˘̀

}
and s := sup

{
w≥ 0 : π(w,ηi?) = ˘̀

}
.

It follows that the control band policy (k, q, s) with (q, s) specified above yields a long-run average
cost of ηi? if the fixed cost remains Lk but the proportional cost is modified to ˘̀. However, since
˜̀
k < ˘̀, we must have ηk < ηi? , again reaching a contradiction.
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(a) ˜̀
k = ˜̀∗ (b) ˜̀

k > ˜̀∗
Figure EC.1 Visualization of v′ and π

EC.3. Numerical Algorithm for Solving the Optimality Equation
To find the solution of the optimality equation (26), we start with an initial guess of v, denoted as v0,
that solves

1
2σ

2v′′0 (w) +h(w) = ηi, w ∈ (0, si) (EC.35)

subject to the boundary conditions v′0(0) = 0, v0(si) = φ̃i(si− qi) + v0(qi) and necessary optimality
conditions v′0(qi) = v′0(si) = ˜̀

i. Notice that (EC.35) is a second-order linear ordinary differential
equation, so we can solve it analytically. Then for each w ∈ (0, si), we seek ζ0(w) that maximizes
{ζ0(w)v′0(w)− r?(ζ0(w))}. The next step is to find v1 such that

1
2σ

2v′′1 (w) + ζ0(w)v′1(w) +h(w)− r?(ζ0(w)) = ηi, w ∈ (0, si) (EC.36)

subject to the same boundary conditions and necessary optimality conditions as mentioned previously.
We can solve (EC.36) numerically via the finite difference method (FDM).

Using the kth estimate of v, which we denote as vk, we can find ζk(w) that maximizes
{ζk(w)v′k(w)− r?(ζk(w))}, and further solve the ordinary differential equation

1
2σ

2v′′k+1(w) + ζk(w)v′k+1(w) +h(w)− r?(ζk(w)) = ηi, w ∈ (0, si)

subject to the set of boundary conditions and necessary optimality conditions by using FDM to
get vk+1(w), the (k + 1)th estimate of v. Repeating these steps we obtain an iterative procedure
that generates a sequence {vk+1(w), ζk(w)} which is expected to converge to the optimal solution
when k→∞. Although we do not attempt to rigorously prove the desired convergence result, our
extensive numerical experiments suggest convergence happens after a few iterations. The algorithm
terminates when the iteration error ||vk+1(w)− vk(w)|| and ||ζk+1(w)− ζk(w)|| become sufficiently
small, for w ∈ (0, si).
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EC.4. Additional Numerical Results for Two-Product Models
This section presents additional numerical results. In §EC.4.1, we present another example where we
compare the solution to the original penalty problem with that to the SDG. In §EC.4.2, we provide
the optimal thresholds used in simulations and the corresponding simulated costs. In §EC.4.3, we
offer an additional example comparing the optimal cost attained using the actual demand model with
the optimal robust cost achieved through our proposed method.

EC.4.1. Solution Comparison Between the Penalty Problem and the SDG
Figures EC.2 and EC.3 show the optimal sequencing and outsourcing rules attained by solving
the original penalty problem and the SDG under the KL divergence. We observe that the value of
the parameter α also influences the optimal outsourcing rule, such that some states that trigger
outsourcing under KL divergence may not trigger outsourcing under the Rényi divergence with
α= 1/2.

(a) Class 1 is in service (b) Class 2 is in service
Figure EC.2 Sequencing strategies derived from the penalty problem and the SDG with γ1 = γ2 = 30 when α= 1

Table EC.1 and Figure EC.4 compare the optimal costs obtained from the original penalty problem
to those derived from the SDG (workload problem) for various (γ1, γ2) pairs. We observe a remarkable
similarity between the long-run average costs obtained from the SDG and the values obtained from
the original penalty problem.

EC.4.2. Optimal Thresholds and the Simulated Costs in §9.2
We present supplementary numerical results obtained in §9.2 in this subsection. Table EC.2 reports
the optimal outsourcing thresholds used in simulations, while Tables EC.3 and EC.4 report the
estimated long-run average costs generated from simulations in §9.2.1 and §9.2.2, respectively.



e-companion to Author: ec15

(a) Class 1 is in service (b) Class 2 is in service
Figure EC.3 Outsourcing strategies derived from the penalty problem and the SDG with γ1 = γ2 = 30 when

α= 1

Table EC.1 Long-run average cost η obtained from numerical programs when α= 1/2 and 1

α= 1/2 α= 1
(γ1, γ2) ηexact ηSDG (γ1, γ2) ηexact ηSDG

(7,7) 35.1853 35.9829 (7,7) 27.2448 26.7500
(30,30) 22.1417 21.0459 (30,30) 20.3445 19.6836
(50,50) 20.7016 19.7286 (50,50) 19.6659 19.1094
(500,500) 18.6757 17.9884 (500,500) 18.6403 18.2891
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Figure EC.4 Long-run average costs of the original penalty problem and the SDG with α= 1/2 and 1
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Table EC.2 Optimal outsourcing parameters for α= 3 and 1
α= 3 α= 1

(γ1, γ2) q1 s1 (γ1, γ2) q1 s1

(0.02,0.02) 0.012 0.246 (0.1,0.1) 0.033 0.193
(0.02,0.05) 0.012 0.242 (0.1,1) 0.034 0.192
(0.02,0.1) 0.012 0.239 (0.1,5) 0.035 0.191
(0.02,0.5) 0.013 0.238 (0.1,10) 0.035 0.191
(0.02,100) 0.013 0.240 (0.1,100) 0.035 0.192
(0.05,0.02) 0.019 0.213 (1,0.1) 0.050 0.188
(0.05,0.05) 0.020 0.211 (1,1) 0.052 0.187
(0.05,0.1) 0.021 0.208 (1,5) 0.053 0.189
(0.05,0.5) 0.021 0.207 (1,10) 0.054 0.189
(0.05,100) 0.021 0.207 (1,100) 0.054 0.189
(0.1,0.02) 0.026 0.198 (5,0.1) 0.073 0.200
(0.1,0.05) 0.029 0.194 (5,1) 0.077 0.201
(0.1,0.1) 0.031 0.193 (5,5) 0.079 0.203
(0.1,0.5) 0.032 0.190 (5,10) 0.080 0.204
(0.1,100) 0.035 0.190 (5,100) 0.080 0.204
(0.5,0.02) 0.044 0.187 (10,0.1) 0.077 0.202
(0.5,0.05) 0.054 0.188 (10,1) 0.080 0.205
(0.5,0.1) 0.059 0.191 (10,5) 0.083 0.207
(0.5,0.5) 0.064 0.193 (10,10) 0.084 0.207
(0.5,100) 0.066 0.194 (10,100) 0.084 0.207
(100,0.02) 0.055 0.190 (100,0.1) 0.081 0.203
(100,0.05) 0.071 0.197 (100,1) 0.083 0.206
(100,0.1) 0.078 0.203 (100,5) 0.085 0.208
(100,0.5) 0.085 0.209 (100,10) 0.086 0.209
(100,100) 0.088 0.210 (100,100) 0.088 0.210

Table EC.3 Ĉ(γ) generated from simulations with ARIMA intensity

γ
Ĉ(γ)

γ
Ĉ(γ)

α= 3 α= 1
(0.02,0.02) 2.750± 1E−1 (0.1,0.1) 2.626± 1E−1
(0.02,0.05) 2.782± 1E−1 (0.1,1) 2.534± 1E−1
(0.02,0.1) 2.703± 1E−1 (0.1,5) 2.549± 1E−1
(0.02,0.5) 2.680± 1E−1 (0.1,10) 2.547± 1E−1
(0.02,100) 2.760± 1E−1 (0.1,100) 2.648± 1E−1
(0.05,0.02) 2.689± 1E−1 (1,0.1) 2.570± 1E−1
(0.05,0.05) 2.646± 1E−1 (1,1) 2.551± 1E−1
(0.05,0.1) 2.604± 1E−1 (1,5) 2.412± 1E−1
(0.05,0.5) 2.508± 1E−1 (1,10) 2.461± 1E−1
(0.05,100) 2.591± 1E−1 (1,100) 2.570± 1E−1
(0.1,0.02) 2.693± 1E−1 (5,0.1) 2.576± 1E−1
(0.1,0.05) 2.595± 1E−1 (5,1) 2.473± 1E−1
(0.1,0.1) 2.619± 1E−1 (5,5) 2.534± 1E−1
(0.1,0.5) 2.546± 1E−1 (5,10) 2.422± 1E−1
(0.1,100) 2.494± 1E−1 (5,100) 2.498± 1E−1
(0.5,0.02) 2.556± 1E−1 (10,0.1) 2.539± 1E−1
(0.5,0.05) 2.444± 1E−1 (10,1) 2.528± 1E−1
(0.5,0.1) 2.387± 1E−1 (10,5) 2.457± 1E−1
(0.5,0.5) 2.404± 1E−1 (10,10) 2.472± 1E−1
(0.5,100) 2.496± 1E−1 (10,100) 2.565± 1E−1
(100,0.02) 2.639± 1E−1 (100,0.1) 2.562± 1E−1
(100,0.05) 2.506± 1E−1 (100,1) 2.593± 1E−1
(100,0.1) 2.503± 1E−1 (100,5) 2.538± 1E−1
(100,0.5) 2.487± 1E−1 (100,10) 2.496± 1E−1
(100,100) 2.517± 1E−1 (100,100) 2.508± 1E−1
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Table EC.4 Ĉ(γ) generated from simulations with CTMC intensity

γ
Ĉ(γ)

γ
Ĉ(γ)

α= 3 α= 1
(0.02,0.02) 8.908± 1E−1 (0.1,0.1) 8.599± 1E−1
(0.02,0.05) 8.586± 1E−1 (0.1,1) 8.568± 1E−1
(0.02,0.1) 8.632± 1E−1 (0.1,5) 8.588± 1E−1
(0.02,0.5) 8.799± 1E−1 (0.1,10) 8.608± 1E−1
(0.02,100) 8.656± 1E−1 (0.1,100) 8.644± 1E−1
(0.05,0.02) 8.630± 1E−1 (1,0.1) 8.641± 1E−1
(0.05,0.05) 8.584± 1E−1 (1,1) 8.671± 1E−1
(0.05,0.1) 8.382± 1E−1 (1,5) 8.686± 1E−1
(0.05,0.5) 8.545± 1E−1 (1,10) 8.697± 1E−1
(0.05,100) 8.547± 1E−1 (1,100) 8.727± 1E−1
(0.1,0.02) 8.608± 1E−1 (5,0.1) 8.848± 1E−1
(0.1,0.05) 8.478± 1E−1 (5,1) 8.789± 1E−1
(0.1,0.1) 8.487± 1E−1 (5,5) 8.877± 1E−1
(0.1,0.5) 8.543± 1E−1 (5,10) 8.925± 1E−1
(0.1,100) 8.609± 1E−1 (5,100) 8.960± 1E−1
(0.5,0.02) 8.643± 1E−1 (10,0.1) 8.881± 1E−1
(0.5,0.05) 8.460± 1E−1 (10,1) 8.878± 1E−1
(0.5,0.1) 8.654± 1E−1 (10,5) 8.926± 1E−1
(0.5,0.5) 8.618± 1E−1 (10,10) 9.012± 1E−1
(0.5,100) 8.770± 1E−1 (10,100) 9.022± 1E−1
(100,0.02) 8.803± 1E−1 (100,0.1) 8.977± 1E−1
(100,0.05) 8.891± 1E−1 (100,1) 8.910± 1E−1
(100,0.1) 9.046± 1E−1 (100,5) 8.949± 1E−1
(100,0.5) 9.060± 1E−1 (100,10) 9.015± 1E−1
(100,100) 9.143± 1E−1 (100,100) 9.082± 1E−1

EC.4.3. Comparison Between Actual and Robust Models
In this subsection, we present an additional example, aiming to compare the cost of the “best” robust
control policy Ĉ(γ?) to the actual optimal cost C?. Recall that C? denotes the scenario where we
assume the decision-maker has perfect knowledge of the true model.

We use the same cost parameters as the one in §9.3, but with λ̃= 160 and λ̂= 40, representing a larger
variation of the realized demand rates. Each state’s sojourn time is again exponentially distributed
with a rate of 2.5. Results are reported in Figure EC.5, where we can see that C? = ηexact = 4.514 and
the difference between Ĉ(γ?) and C? is 3.44%, which is arguably an acceptable difference. If completely
ignoring model errors, the decision-maker would incur a cost that is 8.77% higher than the actual
optimal cost C?. Table EC.5 further shows the optimal outsourcing thresholds and the corresponding
simulated costs for the single-class examples discussed in §9.3 and this subsection.

EC.5. Robustness Against Positive Setup Times
In this section, we investigate scenarios where transitioning between the production of different
products incurs a positive setup time. We next provide a modified sequencing rule, considering the
setup times, and conduct simulation studies to assess its effectiveness.

We illustrate our idea through a two-class system with quadratic cost rates a1 and a2, but the idea
can be easily extended to multiclass settings. Let s̄ denote the setup time. Suppose the server just
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Figure EC.5 Actual cost and cost obtained from the “best” robust policy with λ̃= 160 and λ̂= 40

Table EC.5 Outsourcing thresholds and simulated costs for the single-class example

γ q s
Ĉ(γ)

λ̃= 150, λ̂= 50 λ̃= 160, λ̂= 40
0.2 0.018 0.205 3.855± 3E−2 4.470± 3E−2
0.3 0.025 0.190 3.808± 3E−2 4.451± 3E−2
0.5 0.035 0.182 3.816± 3E−2 4.450± 3E−2
0.7 0.040 0.182 3.868± 3E−2 4.488± 3E−2
1 0.046 0.184 3.841± 3E−2 4.509± 3E−2
2 0.053 0.188 3.937± 3E−2 4.572± 3E−2
5 0.058 0.192 3.915± 3E−2 4.621± 3E−2
10 0.060 0.193 3.959± 3E−2 4.636± 3E−2
20 0.061 0.193 3.971± 3E−2 4.680± 3E−2
1000 0.061 0.194 3.975± 3E−2 4.687± 3E−2

finishes a class 1 job and sees there are pending jobs in the queues. If following the sequencing rule
outlined in the main paper, the production switch occurs if

a1µ1Q1 < a2µ2Q2.

In the presence of a setup time, we demand that a switch occur only if

a1µ1(Q1 + s̄µ1)< a2µ2Q2.

Similarly, every moment when the server finishes a class 2 job and sees there are pending jobs in the
queues, it switches to produce a class 1 job only if

a1µ1Q1 > a2µ2(Q2 + s̄µ2).

We examine a 2-class MTO system, excluding the need to account for model errors in demand
arrivals, to ensure precise comparisons between simulated costs with various setup times and the



e-companion to Author: ec19

long-run average cost achieved by solving the Bellman equation. The arrival and service parameters
are as follows: λ̄1 = λ̄2 = 500 and µ1 = µ2 = 1000. When µ1 and µ2 are the same, their mean service
times, m1 and m2, are equal as well. The cost parameters are specified as L1 = 0.5, L2 = 2, `1 = 0.2,
and `2 = 0.5, with quadratic holding cost rates a1 = 0.01 and a2 = 0.05. By plugging these parameters
back into the Bellman equation, we find that η1 = 10.2512 and η2 = 19.0236. The relation η1 < η2

implies that in this example, outsourcing product 1 should always be prioritized over product 2.
Moreover, we obtain q1 = 0.024 and s1 = 0.045. With this setup, we can run the simulations. The
total duration of each simulation is 500. After comparison, we select the warm-up period to be 50.
Computational results are summarized in Figure EC.6, and confidence intervals are reported in Table
EC.6.

Figure EC.6 Comparative analysis of simulated costs with positive setup times

Table EC.6 Simulated costs for MTO systems with positive setup times

set up time set up time/mean service time Ĉ optimality gap

0 0 10.175± 1E−1 0.74%
0.000005 0.5% 10.441± 1E−1 1.85%
0.00001 1% 10.510± 1E−1 2.52%
0.00002 2% 10.912± 1E−1 6.44%
0.00005 5% 12.906± 1E−1 25.9%
0.0001 10% 15.771± 1E−1 53.8%

Based on Figure EC.6 and Table EC.6, it becomes evident that if the ratio between the setup
and the mean service time remains below 2%, the difference between the simulated cost Ĉ and the
long-run average cost η remains within an acceptable margin, specifically less than 7%. However,
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as the ratio between the setup and the mean service time increases, the gap between Ĉ and η also
increases. When the ratio equals 5%, this difference reaches 25.9%. Thus, we can conclude that our
solution approach remains effective only when setup times are relatively short.

EC.6. Numerical Results for a Multi-Product System
This section presents an MTO system with four classes, which serves as an example to demonstrate
the effectiveness of our quasi-gradient-descent method in enhancing performance. This 4-class example
also serves as an extension of the 2-class examples presented in §9.2. It is worth mentioning that,
unlike the comparison in §9.3 and §EC.4.3, this section focuses on comparing the value of robustness,
rather than analyzing the difference between the cost of the “best” robust policy and actual optimal
cost.

The arrival model of each product follows a CTMC, similar to §9.2.2. In the CTMC, the sojourn
time of each state is exponentially distributed with a rate of 2. The system parameters include
λ̄1 = 90, λ̄2 = 60, λ̄3 = 50, λ̄4 = 50, µ1 = 150, µ2 = 300, µ3 = 500, and µ4 = 500. Furthermore, we set
λ̃1 = 150, λ̂1 = 30, λ̃2 = 100, λ̂2 = 20, λ̃3 = 80, λ̂3 = 20, and λ̃4 = 80, λ̂4 = 20. The cost data includes
fixed outsourcing cost parameters L1 = 2, L2 = 3, L3 = 4, and L4 = 5, proportional outsourcing cost
parameters `1 = 0.2 and `2 = `3 = `4 = 0.5, and quadratic holding cost rates a1 = 0.01, a2 = 0.1,
a3 = 0.2, and a4 = 0.2. The total duration of the experiment is 2000. We again set T1 = 50 and T2 = 100
as the warm-up periods. Statistical estimates of the long-run average simulated cost are compared,
and no significant difference is observed between the estimates under the two candidate warm-up
periods. Therefore, T2 = 100 is selected as the warm-up period. The desired width of the confidence
interval in this example is set to 0.2.

In the 4-class example, when α= 2, the value of robustness is approximately 9.6714−9.1028 = 0.5686,
which is 6.25% better than completely ignoring model errors. Additionally, the performance of our
method is highlighted in Figure EC.7, showing that near-minimum value can be achieved within about
20 iterations. On the other hand, if we were to use the exhaustive method, taking only 5 values for
each γi would require conducting 54 simulations, resulting in significantly more intensive computation.
Thus, we believe that the quasi-gradient algorithm can deliver significant practical value.

EC.7. Numerical Results for a Multi-Server System
To further substantiate the claim in Remark 1, we present simulation examples to demonstrate that
an N -server system will exhibit roughly the same behavior as a system with a single server that
operates N times faster than each of the original servers under heavy-traffic conditions.

First, we consider a system featuring a single “super” server. Similar to §EC.5, we omit the
consideration of model errors in demand to accurately compare the long-run average cost derived
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Figure EC.7 Quasi-gradient-descent algorithm for the 4-class example

from our approach and simulations. We set λ̄1 = 400, λ̄2 = 200, µ1 = 500, and µ2 = 1000, and consider

the following cost parameters: L1 = 1, L2 = 2, `1 = `2 = 0.5, and quadratic holding cost rates a1 = 0.02

and a2 = 0.04. By plugging the parameters back into the Bellman equation with sufficiently large

values for γ1 and γ2, we observe that η1 = 14.180 and η2 = 22.147. The relation η1 < η2 indicates that

we should always outsource product 1 in this example. We also obtain q1 = 0.038 and s1 = 0.073. The

sequencing rule remains the generalized cµ rule.

We next consider a slew of multi-server systems where we maintain all parameters and control

rules identical to the single-server system, except that we scale down µ1 and µ2 by N , where N is the

number of servers. For example, when N = 2, each server’s service rate for product 1 is 250, and for

product 2, it is 500. The total duration of each simulation is 1000. After comparison, we select the

warm-up period to be 100. Computational results are summarized in Figure EC.8, and confidence

intervals are reported in Table EC.7.

Table EC.7 Simulated costs for multi-server systems

number of servers Ĉ optimality gap

1 14.046± 2E−1 0.95%
2 14.130± 2E−1 0.35%
3 14.520± 2E−1 2.40%
4 14.720± 2E−1 3.81%
5 15.049± 2E−1 6.13%
6 15.473± 2E−1 9.12%
7 15.846± 2E−1 11.75%
8 16.476± 2E−1 16.20%
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Figure EC.8 Comparative analysis of simulated costs in multi-server systems

We can observe from Figure EC.8 that when the number of servers is relatively small, as is the case

when N < 5 in this example, the single-server-approximation can yield remarkable accuracy, with

a gap of typically less than 4%. As the number of servers increases, the gap between the simulated

cost Ĉ and the long-run average cost η derived from our Bellman equation grows. For example, for

N = 7, the simulated cost is approximately 15.846± 2E−1, which is 11.7% larger than η. Similarly,

for N = 8, the simulated cost is approximately 16.476± 2E−1, representing a 16.2% increase over

η. We view the results as highly expected because, when N is small, the conventional heavy-traffic

regime, as discussed in our main paper, is known to be effective. However, as N increases, the system

gradually transitions from the conventional heavy-traffic regime to the many-server heavy-traffic

regime. Taken together, we can conclude that when the number of servers is not significantly large,

under conventional heavy-traffic conditions, a single-server system can effectively approximate a

multi-server system.

EC.8. A Few Direct Extensions
We now present a few immediate extensions to the model introduced in the main paper.

EC.8.1. The Choice of Discrepancy Measure
Rényi divergence provides flexibility in the uncertainty set construction via a single function r that

dictates how nature is penalized based on her actions. Importantly, this approach to constructing an

uncertainty set does not require a specific penalty rate function. The decision-maker can specify any

penalty form, as long as the resulting uncertainty set can allay fear of model errors.
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Let p(·) be a penalty function mapping from RI to R+, such that when nature selects θ(t) at

time t, the decision-maker incurs a penalty at the rate of p(θ(t)). This motivates a general robust

control formulation, described below. The robust control problem for the penalty function p(·) can be

formulated as follows: the decision-maker seeks an adapted strategy (T,Ψ) that minimizes

max
θ

lim sup
t→∞

1
t
Eθ
∫ t

0

(
I∑
i=1

ci(Qi(u))− p(θ(u))
)

du+
I∑
i=1

Ni(t)∑
k=0

φi(ξi(k))

 .
Replacing p with r recovers problem (8). Following the development in §6.1, we arrive at an approxi-

mating SDG, in which the decision-maker chooses (Ŷ ,U, Ψ̂) to minimize

max
θ

lim sup
t→∞

1
t
Eθ
∫ t

0

(
I∑
i=1

ci(Q̂i(u))− p(θ(u))
)

du+
I∑
i=1

Ni(t)∑
k=0

φi(ξ̂i(k))


subject to constraints (12)− (13).

By following similar lines of argument to those in §6.2, we can obtain the corresponding workload

problem, in which the decision-maker seeks adaptive control (U, Ψ̃) that minimizes

max
ζ

lim sup
t→∞

1
t
Eζ
∫ t

0
h(W (u))du−

∫ t

0
p?(ζ(u))du+

I∑
i=1

Ni(t)∑
k=0

φ̃i(ξ̃i(k))


subject to constraints (21)− (23),

where p?(z) = min{p(y) : ρ>y = z, yi ∈Θi}. At this point, we would like to emphasize that only two

properties of r? are critical to the proofs of Proposition 5 and Theorem 1. First, r? attains its minimum

value at z = 0 with r?(0) = 0. Second, its convex conjugate is non-negative and Lipschitz continuous.

Consequently, all the analytical results established in the preceding section apply to all p? possessing

these two properties.

EC.8.2. General Service Times

In the main paper, we have assumed that service times are exponentially distributed. As far as

heavy-traffic analysis is concerned, this assumption can be effortlessly relaxed to allow for general

service time distributions without affecting the main results established in Section 6. Indeed, with

general service times, the process Si(t) that represents the number of class i products manufactured

over time if the server was constantly working on class i orders can be viewed as a renewal process

with cycles having mean mi and coefficient of variation νi. As a result, Ŝi in (11) becomes a Brownian

motion with zero drift and variance parameter λ̄iν2
i , whereas Ẑi in (12) becomes a Brownian motion

with zero drift and infinitesimal variance σ2
i = λ̄i(1 + ν2

i ).
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EC.8.3. (Slightly) “Imbalanced” Systems
In this subsection, we demonstrate how to expand our analysis to a more general scenario by relaxing
the assumption of “critical-loading” in Equation (9), allowing for an “imperfectly balanced” system.
Specifically, we examine a situation where the capacity does not match the supply and nominal
demand level exactly. This can be expressed as:

I∑
i=1

ρi = 1−ω for ρi = λ̄imi, i= 1, . . . , I,

where the constant ω measures the extent to which the capacity exceeds the nominal demand volume.
However, we would need ω to be a value of the order of 1/

√
n, where n is a parameter that reflects

the system scale. (In the main paper, we mention that n can be taken as
∑
i λ̄i.) This ensures that

the imbalance between capacity and demand, albeit present, is moderate at best.
With this relaxation, the corresponding SDG is modified to minimize (15) subject to (12), (13),

and the constraint that

Ũ :=
∑
i

Ŷi(t) +ωt is non-decreasing with Ũ(0) = 0.

As a result, the workload process, again denoted as W , satisfies

W (t) =W (0) +B(t) +
∫ t

0
(ζ(u)−ω)du+ Ũ(t)−O(t),

where B,ζ, and O are defined as in (17). Consequently, the Bellman-Isaacs condition associated with
the workload problem becomes finding (v, η) that satisfies

min
{1

2σ
2v′′(w) + g(v′(w))−ωv′(w) +h(w)− η, min

i
inf
z≥0

[
v(w− z) + φ̃i(z)

]
− v(w)

}
≥ 0 (EC.37)

subject to v′(0) = 0.
It is noteworthy that we do not require a complete overhaul of the entire analysis for the new

setting. To demonstrate this, we can define g̃(·) := g(·)− ω·. Consequently, Equation (EC.37) will
resemble that in (33), and g̃ will possess all the essential properties of g’s that are necessary for the
mathematical proofs to hold.

On a related note, a control policy based on a heavy-traffic approximation may remain effective
even when the actual operating regime deviates considerably from the critical-loading assumption. To
illustrate, we present a single-class example without accounting for possible model errors, where we
set λ= 300 and µ= 100, L= 0.5, `= 0.1, and a quadratic holding cost rate function c(x) = 0.01x2.
Such a parameter choice implies that the system is overloaded (ω =−2). Absent the role of nature,
the SDG simplifies to a BCP, which we can solve for the control band thresholds for the queue length
denoted as q and s (by a slight abuse of notation). Since the system is overloaded, existing literature
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on queuing approximation and control suggests that the system likely evolves like a fluid. In particular,
we expect the queue length to increase approximately linearly at a rate of λ−µ, which suggests an
“EOQ” formula as a result of this deterministic approximation. Indeed, a direct application of the
“EOQ” formula (with a slight yet straightforward modification) can give us another upper boundary,
at which the decision-maker would like to push the queue length (through outsourcing) to a lower
barrier. As outsourcing operations are assumed to occur without delay, the application of the “EOQ”
formula should produce a lower barrier of zero. The blue line in Figure EC.9 depicts the sample path
of the queue length Q(t), whereas the green and red lines indicate the control band parameters, q
and s, respectively, obtained from the BCP. The dash-dotted gray line represents the control band
parameter computed from the “EOQ” formula. The plot suggests that the two solutions, one based
on Brownian approximation and the other on deterministic approximation, match up, suggesting that
a control policy derived from a Brownian approximation may still be practically valuable even if the
conditions required to justify its use are not met.
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Figure EC.9 Sample path of the queue length of an overloaded single-class system

EC.8.4. Incorporating Positive Lead Times for Outsourcing
In the main paper, we operate under the assumption of instantaneous production at the subcontrac-
tor. We now explore a possible modeling approach to relaxing this assumption by considering the
subcontractor’s finite production capacity. It is important to note that our goal is not to present a full
extension that incorporates the model in the main paper as a special case, but rather to demonstrate
the feasibility of modeling to capture additional realism should one consider finite production capacity
at the subcontractor. (In fact, the formulation below will not subsume the model in the main paper
because their cost structures for outsourcing are slightly different.)

Noting that impulse control in a production environment implicitly assumes infinite production
capacity and “real-world production/inventory systems all have finite capacity,” Wu and Chao (2014)
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study a continuous-review production system. In this system, the net inventory process is modeled as
a Brownian motion having two operating modes (due to finite production capacity). They frame the
control problem within this context as an optimal switching problem. It has long been recognized
that, compared to impulse control, an optimal switching problem is generally more difficult to solve
because of the need to track the status of the control (Wu and Chao 2014).

To incorporate non-zero “service times” at the subcontractor, it is instructive to conceptualize
the subcontractor as a secondary server capable of switching between two modes: on and off. These
two modes correspond to the decisions to initiate or halt the outsourcing of orders, respectively.
Following the modeling approach in Wu and Chao (2014), we can assume that activating the secondary
server entails a fixed cost L and deactivating it is free. It has been known in the literature on
optimal switching that the case where deactivation also incurs a fixed cost, say L′, is mathematically
equivalent to having a fixed cost of L+L′ for activation and zero cost for deactivation. Moreover,
while operational, this server accrues a usage cost at a rate of `, mirroring but differing from the
proportional cost structure in the impulse control setting. Note that we might be able to capture
additional realism by allowing different products to have different “usage costs.” However, doing so
will make the resulting problem more complex, blurring the main message we try to convey here.

To incorporate this idea into a multiclass MTO scenario, we can follow the development in Sun
et al. (2024) by assuming that the secondary server has a service rate of υi for product i. To draw a
parallel, one can think of the proportional outsourcing cost `i introduced in the main paper as being
`υi, given that ` represents the per-time-unit outsourcing cost in the present context. Next, by keeping
all other model ingredients the same as in the main paper and adapting the derivations in Sun et al.
(2024) to our robust control setting, we will arrive at the following SDG: The decision-maker seeks
adaptive control (Ŷ , (Gi),H) to minimize

max
θ

lim sup
t→∞

1
t
Eθ
∫ t

0

(
I∑
i=1

ci(Q̂i(u))− r(θ(u))
)

du+ `

∫ t

0
H(u)du+L

∑
u≤t

[∆H(u)]+


s.t. Q̂i(t) = Q̂i(0) + Ẑi(t) +
∫ t

0
λ̄iθi(u)du+µiŶi(t)− υi

∫ t

0
Gi(u)du, i= 1, . . . , I,

Q̂i(t)≥ 0 for t≥ 0, i= 1, . . . , I,

G1(t), . . . ,GI(t),H(t)∈ {0,1} for t≥ 0,∑
i

Gi(t)≤H(t) for t≥ 0, and

∑
i

Ŷi(t) +
∫ t

0

(
H(u)−

∑
i

Gi(u)
)

du is non-decreasing with
∑
i

Ŷi(0) = 0.

(EC.38)

Note that Problem (EC.38) differs from the SDG (12)–(15) in that it involves additional control
processes (Gi) and H. Intuitively, process H tracks the status of the secondary server; H(t) = 1 if the
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server is operational (but could potentially be idle) at time t and H(t) = 0 otherwise. Similarly, Gi(t)
is an indicator assuming the value of one if the server is utilized to process class i orders at time t
and zero otherwise.

To effectively reduce Problem (EC.38) to a lower-dimensional equivalent workload formulation, we
need additional assumptions regarding the service rates (υi). In particular, we would require (υi) to
be proportional to (µI), so there exists some constant ῡ such that

υi
µi

= ῡ for i= 1, . . . , I. (EC.39)

In studying a joint pricing and capacity adjustment problem, Sun et al. (2024) makes a similar
assumption in order to devise an approximate control policy. In addition to offering analytical
tractability, assumption (EC.39) also makes practical sense. If a product requires more production
time from the in-house server, it should consume more machine time on the secondary server, since the
length of time it takes to manufacture a product is typically determined by its inherited characteristics.

Let W,B, and ζ be defined as before and redefine “idleness process” by

U(t) :=
∑
i

Ŷi(t) + ῡ

∫ t

0

(
H(u)−

∑
i

Gi(u)
)

du.

From (EC.38) and utilizing (EC.39), we arrive at the following workload problem: The decision-maker
seeks adaptive control (U,H) to minimize

max
ζ

lim sup
t→∞

1
t
Eζ
∫ t

0
(h(W (u))− r?(ζ(u))) du+ `

∫ t

0
H(u)du+L

∑
u≤t

[∆H(u)]+


s.t.W (t) =W (0) +B(t) +
∫ t

0
ζ(u)du− ῡ

∫ t

0
H(u)du+U(t),

U(t) is non-decreasing with U(0) = 0, and

W (t)≥ 0 for t≥ 0.

(EC.40)

Unlike the workload problem in the main paper, Problem (EC.40) is a two-dimensional differential
game, where H serves as both state and control processes. Letting v(y,w) denote the relative value
function and the function g be defined as before, with reference to the general control theory, we
expect v, along with some constant η, to satisfy

min
{

1
2σ

2vww(y,w)− ῡvw(y,w) + g(vw(y,w)) +h(w) + `y− η,

v(1,w) +L− v(0,w), v(0,w)− v(1,w)
}

= 0
(EC.41)

Although the techniques we develop for the main model are not applicable to establishing the well-
posedness of (EC.41), some of the technical tools developed in Sun et al. (2024) may be useful for this
purpose, given that (EC.41) and the optimality equation in Sun et al. (2024) are structurally similar.
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EC.9. Further Discussion on the Selection of the Warm-up Period
In the main paper, we present an easy-to-implement yet somewhat naive method for determining

the warm-up period. Therein we compare two candidate warm-up periods, T1 = 50 and T2 = 100, to

determine if there exists a noticeable difference between the simulation estimates. There are, however,

other well-adopted methods in the literature for selecting the warm-up period; refer to Robinson

and Ioannou (2007) for a comprehensive summary. In this section, we contrast various methods that

are applicable to our problem for assessing the impact of warm-up period selection. All selected

approaches exhibit relatively good performance, as illustrated in Table 1 of Robinson and Ioannou

(2007). We use a system similar to that in §9.2.2 with α= 1 and γ1 = γ2 = 1, wherein the cost data

includes outsourcing costs L1 = 0.5, L2 = 0.8, `1 = `2 = 0.2, and quadratic holding cost rates a1 = 0.01

and a2 = 0.02. For the CTMC, each state’s sojourn time is exponentially distributed at a rate of 5,

with λ̃1 = 150, λ̃2 = 110, λ̂1 = λ̂2 = 10, while µ1 = 100 and µ2 = 300. It can be achieved that q1 = 0.052

and s1 = 0.187.

The first approach we want to explore is time-series inspection, which can be seen as more general

compared to the one utilized in the main paper. Using this method, the warm-up period is determined

by examining the time series of the queue length. The length of the warm-up period is chosen as the

point where the time series seems to stabilize around a consistent mean. Specifically, by a slight abuse

of notation, we consider I candidate warm-up periods, denoted as T1 <T2 < · · ·<TI . Each iteration

involves selecting Ti as the warm-up period, followed by recording the queue lengths Q1(Ti) and

Q2(Ti) corresponding to Ti. In our examples, we set Ti = i× 5. The number of simulation replications

is 300. Without specific clarification, in the following context, Q1(Ti) and Q2(Ti) represent the sample

mean of each queue length over 300 replications. Computational results are reported in Table EC.8.

It is evident from Table EC.8 that when the warm-up period is equal to or exceeds T4 = 20, the

simulated queue lengths remain relatively stable around their respective means. Specifically, after

i= 4, the mean of the time series for Q1 is 4.880, while for Q2, it is 0.984. This outcome further

validates the effectiveness of the chosen warm-up period T = 100 in our simulations, as discussed in

the main paper.

Table EC.8 Computational results for the selection of the warm-up period

i Ti Q1(Ti) Q2(Ti) OMCR(i)
1 5 3.773 0.753 0.0436
2 10 4.777 0.913 0.0335
3 15 4.497 0.803 0.0445
4 20 4.887 0.873 0.0559
5 25 4.926 0.920 0.0871
6 30 4.875 1.047 0.1545
7 35 4.900 1.070 0.2970
8 40 4.813 1.011 1.1482
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We can extend the simple time-series inspection to other similar approaches, such as ensemble
average plots, the cumulative-mean rule, and the deleting-the-cumulative-mean rule. The performance
of these approaches closely resembles that of time-series inspection; therefore, we omit detailed
discussion of them in this section.

The second approach we want to test involves the forward data-interval rule and the backward
data-interval rule. In our examples, applying the forward data-interval rule to a time-series of I
observations of Q1 and Q2 entails identifying the warm-up period as the first point in the series that
is neither the maximum nor the minimum of the remaining observations. Conversely, employing the
backward data-interval rule suggests selecting the warm-up period as the last point that is neither
the maximum nor the minimum of all the preceding observations of both Q1 and Q2. We can observe
from Table EC.8 that applying the forward data-interval rule results in a warm-up period of 30, while
applying the backward data-interval rule results in a warm-up period of 15. Once again, applying
these two approaches can demonstrate the effectiveness of the selected warm-up period discussed in
the main paper.

Another approach is the so-called marginal confidence rule (MCR), which requires the following
judgment: if the initial observations deviate significantly from the sample mean and exert a notable
influence on the calculation of confidence intervals, then those observations should be removed. In our
context, for a series of observations, Q1(Ti) and Q2(Ti), we can choose the warm-up period at the
point d that minimizes the following expression:

1
(I − d)2

I∑
i=d+1

[
(Q1(Ti)−Q1(TI−d))2 + (Q2(Ti)−Q2(TI−d))2

]
.

Denote the objective of the above equation for each i as OMCR(i). The details of these results are
presented in Table EC.8. It is evident that setting the warm-up period to 10 yields the minimum
objective of MCR. This reaffirms the conclusion that the selected warm-up period discussed in the
main paper is sufficiently long to ensure reliable performance.

EC.10. Further Discussion on the Choice of Parameter α
In the main paper, we focus on varying γ to create uncertainty sets that reflect diverse ambiguity
levels and demonstrate that the choice directly impacts the control rule derived for the decision-maker.
Here, we first offer some clue, based on our intuition, as to when a larger or smaller value of α may
produce more benefits. We then conduct some numerical experiments, which serve as initial validation
for our intuition. We should note, however, that we do not claim that the numerical insights are fully
generalizable, as they are based on limited test cases.

The system parameters as follows: λ̄1 = 200, µ1 = 250, λ̄2 = 100, and µ2 = 500. The cost parameters
are fixed outsourcing costs of L1 = 0.5 and L2 = 0.8, proportional outsourcing costs of `1 = `2 = 0.2,
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and quadratic holding cost rates of a1 = 0.01 and a2 = 0.02. Similar to §9.2.2 in the main paper, we
use an arrival model where the demand rate for each order follows a non-homogeneous Poisson process
with a CTMC intensity. Below, we present two scenarios: one where the actual demand rate of class 1
is moderately higher than the average value of λ̄1 = 200 most of the time but can occasionally drop
to a very low value, and another where the actual demand rate of class 1 is moderately lower than
the average value of λ̄1 = 200 most of the time but can occasionally rise to a very high value.

When the actual arrival rate is moderately higher than the average value for most of the time but
significantly lower for a small portion of the time, we expect that a larger value of α in the Rényi
divergence can slightly benefit the decision-maker. This is because a larger value of α penalizes the
right tail of the demand rate distribution (i.e., values that are greater than the nominal demand
rate) more heavily than the left tail (i.e., values that are smaller than the nominal demand rate). In
contrast, when the actual demand rate is moderately lower than its nominal value for most of the
time but significantly higher for a small portion of the time, we expect that the decision-maker can
benefit more from choosing a smaller value for α. This is because a smaller value of α would penalize
the left tail more heavily, reflecting the decision-maker’s prior belief that larger demand rates are
more likely than smaller ones.

To validate our intuition, we consider two scenarios, both assuming CTMC intensity. In the first
scenario, we set λ̃1 = 260 and let its sojourn time be exponentially distributed with a rate of 5. We
set λ̂1 = 20 and let its sojourn time be exponentially distributed with a rate of 15. Furthermore,
we set λ̃2 = λ̂2 = 100, so that the demand rate of class 2 stays at the average value λ̄2 = 100 at all
times. The optimal outsourcing rule is always to outsource product 1, and the optimal sequencing
rule is the generalized cµ rule. Under this setting, if the decision-maker does not account for model
errors and uses the outsourcing thresholds obtained from the nominal model, the long-run average
simulated cost is approximately 12.394± 1E−1. However, if the decision-maker uses KL divergence
and varies γ, the lowest simulated cost is around 11.753± 1E−1, resulting in a 5.17% difference. If
the decision-maker uses Rényi divergence with α = 5, the lowest simulated cost is approximately
11.581± 1E−1, yielding a 6.56% difference. So, using a Rényi divergence with a larger value of α in
this scenario seems to deliver slightly better performance. In the second scenario, we set λ̃1 = 380
with the sojourn time exponentially distributed with a rate of 15, while λ̂1 = 140 with the sojourn
time exponentially distributed with a rate of 5. Similarly, we set λ̃2 = λ̂2 = 100, so that the demand
rate of class 2 stays at the average value λ̄2 = 100 at all times. In this case, if the decision-maker
does not consider model errors and uses the outsourcing thresholds obtained from the nominal model,
the long-run average simulated cost is approximately 11.306± 1E−1. If using KL divergence and
varying γ, the lowest simulated cost is around 10.486± 1E−1, giving a 7.25% difference. If, however,
the decision-maker uses Rényi divergence with α= 1/2, the lowest simulated cost is approximately
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10.269± 1E−1; the difference is 9.17%. Therefore, in this scenario, using Rényi divergence with a
smaller α seems to deliver a slightly better performance.

The two scenarios above illustrate that the parameter α allows for potential cost savings when the
real-world model deviates from the nominal model. However, it seems clear that, in comparison to
choosing the value of γ, the choice of α appears to have limited potential for improving cost savings.

EC.11. Proof of Auxiliary Results
Proof of Lemma EC.1. The non-negativity of g is immediate. We then need to establish the Lipschitz

continuity of g. For any x1, x2 ∈R with x1 <x2, let ζ1, ζ2 ∈ [ρ>a, ρ>b] be the corresponding maximizers
for g(x1) and g(x2). The definition of g yields two inequalities:

g(x1) = x1ζ1− r?(ζ1)≥ x1ζ2− r?(ζ2) and g(x2) = x2ζ2− r?(ζ2)≥ x2ζ1− r?(ζ1).

Combining the two inequalities gives us

(x1−x2)ζ2 ≤ g(x1)− g(x2)≤ (x1−x2)ζ1,

establishing the desired Lipschitz continuity of g. �

Proof of Lemma EC.2. For part (i), since g is Lipschitz continuous and h is continuous, we can
invoke the Picard–Lindelöf theorem to conclude that there exists a unique continuous solution π(w,η)
to (29) on the interval [0,∞).

For part (ii), to show the continuity of π(w,η) in η ∈R and the continuity of π′(w,η) in w ∈R+

and η ∈R , we can refer to Lemma 5 in Cao and Yao (2018), along with part (i) of the present lemma
and the continuity of h, g, and π. �

Proof of Lemma EC.3. We first argue that, if η1 < η2, then π(w,η1)<π(w,η2) for any fixed w > 0.
To that end, suppose for the sake of contradiction that π(w,η1)>π(w,η2) for some w > 0. By a slight
abuse of notation, we define:

f(w) := π(w,η2)− π(w,η1) and w0 := inf {w > 0 : f(w)≤ 0} .

It is clear that w0 > 0 due to the fact that f ′(0)> 0. It follows from the definition and continuity of π
that f(w0) = 0 = f(0) and f(w)> 0 for all w ∈ (0,w0). By the continuity of f(w) around w0, there
exist two real numbers w1,w2 ∈ (0,w0) with w1 <w2 such that

f(w1)> f(w2) and Mf(w)< η2− η1 for all w ∈ [w1,w2]. (EC.42)

It is clear from (29) that

1
2σ

2f ′(w) + g(π(w,η2))− g(π(w,η1)) = η2− η1. (EC.43)
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Integrating (EC.43) from w1 to w2 yields that

(η2− η1)(w2−w1)

= 1
2σ

2(f(w2)− f(w1)) +
∫ w2

w1
[g(π(w,η2))− g(π(w,η1))] dw

<

∫ w2

w1
[g(π(w,η2))− g(π(w,η1))] dw

≤
∫ w2

w1
Mf(w)dw

< (η2− η1)(w2−w1),

(EC.44)

where the first and last inequalities follow from (EC.42) and the second inequality is due to (EC.13).

Equation (EC.44) yields a contradiction. Therefore, π(w,η1)<π(w,η2) holds for any fixed w > 0, if

η1 < η2.

Next, we show that limη→∞ π(w,η) =∞ for any given w > 0. Note that there must exist a number

η̂ (dependent on w) such that for all η≥ η̂,

η > h(w). (EC.45)

We claim that for any fixed y ∈ (0,w),

π(y, η)≥ 0 for all η≥ η̂. (EC.46)

To prove this claim, suppose for the sake of contradiction that (EC.46) is not true. Then, there must

exist some z ∈ (0,w) such that π(z, η) = 0 and π′(z, η)< 0. It follows that

0> 1
2σ

2π′(z, η) = η−h(z)> η−h(w)> 0,

which is a contradiction. Therefore, (EC.46) holds, which in particular implies that for all y ∈ (0,w)

1
2σ

2π′(y, η) + g(0) +Mπ(y, η)≥ η−h(y) for all η≥ η̂.

It follows that

π(w,η)≥ 2
σ2

∫ w

0
[η−h(y)] e−

2M
σ2 ydy for all η≥ η̂.

Letting η→∞ in the inequality above allows us to conclude that

lim
η→∞

π(w,η) =∞.

The proof of limη→−∞ π(w,η) =−∞ is similar and thus is omitted. �
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Proof of Lemma EC.4. Note that h(w1)<h(w2) for w1 <w2. This, along with (29), allows us to

conclude that there do not exist two numbers w1 <w2 such that

π(w1, η) = π(w2, η) and π′(w1, η)≤ 0≤ π′(w2, η). (EC.47)

Therefore, (a) π(w,η) cannot have a local minimizer in w ∈ (0,∞), and (b) π(w,η) cannot be a

constant in any interval in (0,∞). We will then employ properties (a) and (b) to prove parts (i)–(iii).

We first prove part (i). Note that when η≤ 0, we must have π′(0, η)< 0. The continuity of π′(0, η)

and properties (a) and (b) immediately imply that π(w,η) is strictly decreasing in w for w > 0. Next,

we show that limw→∞ π(w,η) = −∞. We can prove this by contradiction. If the statement is not

correct, there must exist a finite number π such that limw→∞ π(w,η) = π and limw→∞ π
′(w,η) = 0.

Letting w→∞ in (29) yields that limw→∞ h(w) = η− g(π), which contradicts Assumption 1 that

limw→∞ h(w) =∞.

For (ii), we define

η̄ := sup{η ∈R : there exists a w > 0 such that π′(w,η)< 0} . (EC.48)

Note that η̄ is well defined since η̄ > 0. If η≥ η̄, by the definition of η̄ and the continuity of π′(w,η)

in η, we can conclude that π(w,η) is strictly increasing in w. The proof of limw→∞ π(w,η) =∞ is

similar to that of (EC.15) and thus is omitted.

For (iii), we begin by claiming that for each η ∈ (0, η̄), there exists a number w such that π′(w,η)< 0.

If not, we have π′(w,η)> 0 for all w > 0. Similar to the proof of (i), we can obtain that

lim
w→∞

π(w,η) =∞. (EC.49)

On the other hand, the definition of η̄ and the continuity of π(w,η) indicate that there exist a η† > η

such that π′(w†, η†)< 0 for some w†. For w >w†, π(w,η†) is decreasing and

lim
w→∞

π(w,η†) =−∞. (EC.50)

However, (EC.49) and (EC.50) contradict Lemma EC.3 with η† > η.

By the continuity of π′(w,η) in w and the definition of w?(η), we can conclude that π′(w?(η), η) = 0.

Furthermore, properties (a) and (b) imply that π(w,η) is strictly increasing in [0,w?(η)] and strictly

decreasing in [w?(η),∞). The proof of limw→∞ π(w,η) =−∞ is very similar to that of (EC.15) and

thus is omitted. �
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Proof of Lemma EC.5. For (i), define

η‡ := inf
{
η ∈ (0, η̄) : π(w?(η), η)≥ ˜̀

i

}
.

It follows from Lemma EC.4(iii) that

π(w?(η), η) = max
w≥0

π(w,η), (EC.51)

when η ∈ (0, η̄). Recall that Lemma EC.3 implies that π(w?(η), η) is increasing in η. Furthermore,
Lemma EC.4 shows that

lim
η↓0

π(w?(η), η) = 0< ˜̀
i and lim

η↑η̄
π(w?(η), η) =∞.

Hence, η‡ is well-defined, and we also have

π(w?(η‡), η‡) = ˜̀
i and π(w?(η‡), η)> ˜̀

i, for η ∈ (η‡, η̄).

Furthermore, let

q(η) := inf
{
w≥ 0 : π(w,η) = ˜̀

i

}
and s(η) := sup

{
w≥ 0 : π(w,η) = ˜̀

i

}
.

It follows from Lemma EC.4(iii) that both q(η) and s(η) are well-defined, finite, and unique.
For part (b), we can rewrite the function f̃(η) as

f̃(η) =


0 for η ∈ (−∞, η‡],∫ s(η)
q(η) [π(w,η)− ˜̀

i]dw for η ∈ (η‡, η̄),
∞ for η ∈ [η̄,∞).

Also, f̃(η) is strictly increasing in η ∈ (η‡, η̄). We can thus obtain that

lim
η↓η‡

f̃(η) = 0 and lim
η↑η̄

f̃(η) =∞.

Combining this with the continuity of f̃ in η ∈ (η‡, η̄), we conclude that there exists a unique ηi ∈ (η‡, η̄)
such that (EC.19) holds. �


