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Decision making under catastrophic risk.

@ How to model catastrophic risk?
o Is safety-first principle rational?

@ Robust decision making under catastrophic risk.

Estimation the catastrophe probability

@ Generalized Chebyshev’s inequalities and catastrophic risk
estimation.
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Catastrophic risk: estimation and decision making

Model:

@ Uncertain outcome - (finite valued) random variable X.
o Catastrophe: X < C forsome C € R

Aims:
@ Catastrophic risk estimation: find P[X < C].

@ Decision making: Preference relation > on space of r.v.s

> is consistent with safety-first principle if

PX<C|<PY<c] = X>Y
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Safety-first principle: standard paradoxes

> 1s:
e Continuous if sets {Y : Y = X} and {Y : X = Y} - closed VY
@ Risk averse if X > Y, whenever Y ~ X + Z with
E[Z|X =x] =0, Vx.
- (Equivalently, X = Y, whenever E[X] = E[Y] and X >=gsp Y)
Paradoxes. Safety-first principle (X = Y < P[X < C] <P[Y < C]):
@ is not continuous;

@ is not risk-averse.

Reason: It may be X < C. Wrong model?
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Alternative model

@ Random variable X takes values in R U {—o0}.
o Catastrophe: X = —o0.

o Safety-first principle:

PX=-0]<PlY=-x] = X>Y

(a) = can be continuous, risk-averse, and consistent with the
safety-first principle.

(b) Every risk-averse strictly monotone > is consistent with the
safety-first principle.
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Is risk aversion “rational”?

Person with capital 10°.
Risk of imprisonment and confiscation 20%

A lawyer promises to reduce it to 19% for premium 107.
Should a person agree?

o Safety-first = Yes.
@ Risk aversion = Yes.

@ Common sense = No.

Reason: 20% and 19% are practically indistinguishable!
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Robust preference relation

20% =~ 19%, but 1% # 0%.
Probabilities should be compared in relative sense!
A)—P(A
.0) = up 1))
p(P,Q) <e=1—-€e<Q(A)/P(A) <1+ ¢ for any event A.
For any X, let
o X(©) be an r.v. with the CDF
Fyo(x) =P [}?@ < x} — QX < x], where p(P,Q) < ¢

@ A, be an r.v. (error) such that sup |A | < e.

> is robust if X > Y implies x(© 4 Ag = Y(© for some € > 0.
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Sensitivity to catastrophic events

(Chichilnisky (2002)) = is insensitive to catastrophic events, if X > Y
implies that there exists e > 0 such that X(©) = ¥(), where X(¢) and
Y(©) are any r.v.’s such that P X = X(E)] >1—eand
Ply=Y9]>1-e

A “good” > should be

@ Continuous
@ Robust

@ But not insensitive to catastrophic events!
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Ordinal utility theory

Expected utility theory:

X=Y & 0<Eu(X)] - Eu(r)] = /0 1 ( / . v(x)dx) dr

where v(x) = /().

Generalization (ordinal utility theory):

1
XY < 0</<
0

qx (1)
/ v(x,1)dx | dt
qr (1)
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(a) v(x,1) = 1 - safety-first principle.

(b) v(x,1) is independent of 7 - expected utility.

(c) v(x,1) is independent of x - Yaari’s dual utility theory.
(x,1) =

(d) v(x,t
Let o(1) = fi)oo v(x, 1) dx.

u(x)p(t) - generalizes Prospect theory.

(1) > is robmt<:>f o(t)dt < 400, Ve > 0.

(i1) > is sensitive to catastrophlc events <
Js (t) dt = 400, Ve> 0.

2 . . ..
v(x, 1) = (1 + [x])" =~ ! is strictly monotone, robust, and sensitive to
catastrophic events.
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Summary of Part I: decision making

@ Modelling catastrophe as X < C, C € R may not be appropriate.
@ We suggest to model it as X = —oo
o In this setting, every monotone risk averse > is “safety-first” one.
e However, one may replace risk aversion by robustness
@ We derive family of > which are:

e continuous;

e monotone;

e robust;

e sensitive to catastrophic events.
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How to estimate the probability of catastrophe

Back to standard setting:
@ X - some random variable.
@ Catastrophe occurs if X < C for some C.
Problem:
e How to estimate P[X < C]?
e Given i.i.d. sample x1, xp, . . ., X, it may be that all x; > C.

e However, we can estimate E[X] and (for example) o (X).
@ Option 1: Assume particular distribution (normal?) and find

Px < ().
@ Option 2: No assumptions, and use (one sided) Chebyshev’s
inequality:
o*(X)
PX<EX—-a < ———"
o2(X) + d?

Options 1 and Options 2 are two extremes.
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Chebyshev’s inequalities for families of distributions

Options 1 and Options 2 are two extremes.

Let us assume that X belongs to some family F.
Can we then improve Chebyshev’s inequality? Yes!
Examples:

@ If X has log-concave cdf then:

V1+28logB— 32 o(X)
f—logB—-1  a '

@ For unimodal class (mode=mean)

P[X <EX —a] <5,

3a
PX<EX-d<p = (15@3 — o(x).

Our methodology works for essentially any “natural” family F'!
And for any “deviation measure” in place of 0!
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Chebyshev’s inequalities for families of distributions
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'Figure from paper: Faridafshin, F., Grechuk, B., Naess, A., Calculating
Exceedance Probabilities Using a Distributionally Robust Method. Structural Safety,
67,2017, pp 132-141
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Decision making under catastrophic risk.

@ We suggest to model it as X = —o0
e Formulate desirable properties of preference relation >

@ Derive family of > satisfying these properties.
Estimation the catastrophe probability

@ Make assumptions about underlying distribution (assume that
XeF)

@ Develop methodology to derive Chebyshev’s inequalities for any
family F

@ Illustrate for log-concave and unimodal families.
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