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Motivation: Extreme Valuations and Bundling

Extreme Valuations

• Dec 2007, two $250 tickets to a Led Zeppelin reunion concert, auctioned off in London

for $168,000 to a 25 yo Kenneth Donnell

• Cable and satellite TV providers: “basic” + pay-per-view for unusual special events;

high valuations of a small fraction of consumers, very heavy tailed

• Sporting and cultural events: season tickets; small fraction of consumers with high

valuations

• Collectibles and antique items: sold in lots to customers with very diverse valuation

Question: Is bundling optimal?
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Available results

mostly under thin-tailed distributions or similarly restrictive valuations:

Palfrey (83): bounded

Bakos & Brynjolfsson (99, 00), Fang and Norman (06), Zhou (17): log-concave

Geng & et al (05): correlated valuations

Ibragimov & Walden (10): independent valuations

Common result: optimal for monopolist to bundle when MC low, to sell separately when

MC high; buyers never unanimously prefer separate auctioning

This paper: extremely heavy-tailed dependent valuations lead to reversal of standard

conclusion
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Setup

Single seller of M = {1, 2, . . . ,m} goods

Bundles B: subsets of M

Bundling decisions B: partitions of M , B = (B1, . . . , Bl)

• B = {{1}, {2}, . . . , {m}}: separate provision

• B = {1, 2, . . . ,m}: single bundle

Valuations for bundles

v(B) =
∑
i∈B

Xi additive valuation

Xi: representative consumer’s valuation for good i ∈M
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How to allow for substitutes and complements?

Option 1: a copula function C for marginal distributions of Xi: negative dependence =

substitutes, positive = complements

Option 2: v(B) =
(∑

i∈BXi

)r
: r > 1 complements, 0 < r < 1 substitutes

Option 3: both

Probability of buying B:

P (v(B) ≥ kpB) = PC

([∑
i∈B

Xi

]r
≥ kpB

)

where k = card(B); pB = per-good price of B
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Seller’s expected profit from selling B to n buyers:

n

(
kpB −

∑
i∈B

ci

)
PC

([∑
i∈B

Xi

]r
≥ kpB

)

where ci = marginal cost of good i

Prices set by the monopolist

• prices per good pB ∈ [0, pmax]

• pmax: regulatory price

• p: price under separate provision, in B

• p: price per good in single bundle, B
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Key to results: tail and dependence properties of the joint distribution of valuations

H(x1, . . . , xk)⇒ PC

([∑
i∈B

Xi

]r
≥ kpB

)

Roughly, bundle if bundling increases this probability

Main point: extremely heavy tailed valuations (with tail index α < 1) and strongly

dependent valuations (characterized by certain copulas and other dependence structures)

interact to produce reversals of conventional results

Example: with extremely heavy tails, per-good valuations for bundles have more “spread”

than valuations for component products; with a positive dependence between buyer’s

valuations, the seller may prefer to sell separately even with zero MC (eg, information

goods) and bundle even when MC are large (eg, seasonal concert tickets)

6 of 40



Digression I: Heavy tailed univariate distributions

• Power law family

P(|X| > x) ≈ x−α, where α > 0 is tail index

• Key feature
E|X|p <∞ iff p < α

Moments of order p ≥ α are infinite

α ≤ 4⇒ infinite fourth moments: EX4 =∞ – moderately heavy
α ≤ 2⇒ infinite variances: EX2 =∞ – moderately heavy
α ≤ 1⇒ infinite first moments: E|X| =∞ – extremely heavy
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Polynomial vs exponential growth and decay

Any exponential growth

will ultimately exceed

any polynomial growth

Light vs heavy tails

Which is Gaussian?

Which is Cauchy α = 1?

Which is Levy α = 0.5?
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A tale of two tails: ‘Mild’ and ‘Wild’ Chance

Tail of Levy is heavier than Cauchy

which is heavier than Normal

Ex ≈
∫
x C
x2dx diverges for Cauchy

Ex ≈
∫
x C

ex
2dx converges for Normal

Simulated series, n=25:

More

extreme

observations
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Special cases of power law:

• Student t distribution

• Cauchy and Levy distributions

• Pareto distribution

• Stable distributions with α < 2

Empirical estimates of α:

• lower for markets of the type nobody knows, winner takes it all, success breeds success,

i.e. uncertain individual demands, product success or failure, especially in information

and creative goods markets
• returns from technological innovations: α <<< 1
• loss distributions for operational risks: α < 1
• profits in motion pictures industry: 1 < α < 2
• firm sizes, largest mutual fund sizes, city sizes: α ≈ 1 (Zipf’s law)
• income: α ∈ (1.5, 3); wealth: α ≈ 1.5
• economic losses from earthquakes: α ∈ [0.6, 1.5]
• citation indices, social network node degrees: α < 1 (infinite expectation)
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Stable distributions

X ∼ Sα(σ): symmetric stable distribution, α ∈ (0, 2] if characteristic function

EeitX = exp(−σα|t|α)

Key property: iid X1, ..., Xn ∼ Sα(σ)∑
iwiXi =d (

∑
iw

α
i )

1/α
X1, ∀wi

• Normal N(0, σ): α = 2⇒ 1√
n
(X1 + . . .+Xn) =d X1

• Cauchy: α = 1, f(x) = σ
π(σ2+x2)

• Levy: α = 1/2, f(x) = σ√
2π
x−3/2exp(− 1

2x)

Note: these are power law distributions if α ∈ (0, 2):

P(|X| > x) ≈
C

xα
so moments E|X|p finite iff p < α
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Digression II: Copulas and dependence

Main idea: to separate effects of dependence from effects of marginals in multivariate

distributions

Copulas: Functions that join marginals to form multidimensional cdf

H(x1, . . . , xT )︸ ︷︷ ︸
multivariate c.d.f.

= C(F1(x1), . . . , FT (xT )︸ ︷︷ ︸
univariate marginal c.d.f.’s

)

︸ ︷︷ ︸
Copula function

m

h(x1, . . . , xT )︸ ︷︷ ︸
multivariate p.d.f.

= c(F1(x1), . . . , FT (xT ))︸ ︷︷ ︸
copula p.d.f.

T∏
t=1

ft(xt)︸ ︷︷ ︸
marginal p.d.f.
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• Recall

If X has cdf F , then F (X) ∼ uniform (on [0, 1])

If U ∼ uniform, then F−1(U) ≡ X has cdf F

• Definition

A copula is a multivariate distribution whose marginals are uniform:

copula cdf C(u1, . . . , uT )

copula density c(u1, . . . , uT ) =
dTC(u1,...,uT )

du1...duT

• Mechanism

Suppose you want X1 to have cdf F1, X2 to have cdf F2:

pick a copula, let U1 = F1(X1), U2 = F2(X2)

now you have a joint distribution for (X1, X2): C(F1(x1), F2(x2))

So given marginals, the only “choice” is which copula.
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• Sklar’s (1959) Theorem (“True” copula)

Suppose we want X1, X2 to have cdf’s F1, F2 and joint cdf H. There is always a

copula (if H is continuous it is unique) such that

H(x1, x2) = C(F1(x1), F2(x2)).

• Examples

- Independence or product C(u, v) = Π(u, v) = uv c(u, v) = 1

- Logistic C(u, v) = uv
u+v−uv

- Gaussian C(u, v; ρ) = Φ2(Φ
−1(u),Φ−1(v); ρ)

- Gumbel C(u, v, ρ) = exp
[
−((− lnu)ρ + (− ln v)ρ)1/ρ

]
, ρ ∈ [1,∞)

- Frank C(u, v, ρ) =

{
uv, ρ = 0

−1
ρ ln

[
1 + (e−ρu−1)(e−ρv−1)

e−ρ−1

]
, ρ ∈ (−∞,∞)\{0}
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- Eyraud-Farlie-Gumbel-Morganstern (EFGM)

C(u, v, ρ) = uv(1 + ρ(1− u)(1− v)), ρ ∈ [−1, 1]

- General copula by inversion

· start with c.d.f.’s K(x1, x2), u = F1(x1) and v = F2(x2)

· obtain x1 = F−1
1 (u), x2 = F−1

2 (v) and

C(u, v) = K(F
−1
1 (u), F

−1
2 (v))

- Archimedean copulas

· start with a generator function ϕ : (0, 1)→ [0,∞], ϕ′ < 0 and ϕ′′ > 0

· obtain

C(u, v) = ϕ
−1

(ϕ(u) + ϕ(v))

· e.g., Gumbel copula is Archimedean with ϕ(t) = (− log t)ρ
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• Note

– copula dependence parameter ρ parameterizes dependence between U and V ; it

has nothing to do with correlation except for normal copula

– copulas have bounds

max(u+ v − 1, 0)︸ ︷︷ ︸
Fréchet-Hoeffding lower bound copula︸ ︷︷ ︸

countermonotonicity

≤ C(u, v) ≤ min(u, v)︸ ︷︷ ︸
Fréchet-Hoeffding upper bound copula︸ ︷︷ ︸

comonotonicity

– copulas have unequal ranges of dependence as measured by any common measure

e.g. Kendall’s τ ≡ P[(U1 − U2)(V1 − V2) > 0︸ ︷︷ ︸
concordance

]− P[(U1 − U2)(V1 − V2) < 0︸ ︷︷ ︸
discordance

]

τFrank ∈ [−1, 1] while τFGM ∈ [−2/9, 2/9]

– to separate dependence from effects of marginals: F ’s capture heavy-tailedness,

skewness, existence of moments, etc; C captures long memory vs short memory,

volatility clustering, tail dependence, etc
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Parametric copula density example: Plackett, ρ = 0.002 and ρ = 100

C(u, v; γ) =
1 + (ρ− 1)(u+ v)−

√
(1 + (ρ− 1)(u+ v))2 − 4ρ(ρ− 1)uv

2(ρ− 1)

End of digressions
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Back to bundling problem

Seller’s problem:

max
B

(
kpB −

∑
i∈B

ci

)
PC

([∑
i∈B

Xi

]r
≥ kpB

)

where k = card(B); pB = per-good price of B; ci = marginal cost of good i

We study properties of this problem under Xi from possibly extremely heavy tailed power

law distribution under certain dependence structures (ie, a generic power-type copula family

and multiplicative common shock structure).
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Main results

Theorem 1: For valuation function v(B) =
(∑

i∈BXi

)r
, 0 < r < 1, and valuations

Xi ∼ Sα, r < α < 1, with certain dependence structures, risk-neutral seller strictly

prefers B to any other bundling decision (ie, goods are sold separately)

Note: high degree of substitutability r < α, plus α < 1.

Theorem 2: For valuation function v(B) =
(∑

i∈BXi

)r
, ∀r > 0 and valuations

Xi ∼ Sα, 0 < α < min{1, r}, with certain dependence structures, risk-neutral seller

strictly prefers B to any other bundling decision (ie, goods are sold as a single bundle)

Note: complements r > 1 or weak substitutes α < r < 1, plus α < 1.

Theorem 3: For valuation function v(B) =
∑

i∈BXi and valuations Xi ∼ Sα,

0 < α < 1, with certain dependence structures, risk-neutral seller strictly prefers B to

any other bundling decision (ie, goods are sold as a single bundle)

Note: independently priced goods r = 1, plus α < 1.
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Intuition and examples: bundle if it increases probability of sale.

For extremely heavy tails, per-good valuations of bundles do not concentrate as size of

bundle grows unlike with thin or moderately heavy tails.

Seller bundles even with large ci in order to increase the chance of capturing the high

valuations. Except when goods are strong substitutes and the effect of high valuations is

offset by the strong dependence between components of the bundle.

Optimal bundling for goods with extreme valuations is opposite to thin-tailed valuations

Bundled when valuations are extreme, no matter the ci, or when complements:

observed in seasonal tickets for sporting and cultural events and performances, Wagner’s

Der Ring des Nibelungen bundle.

Separate provision for strong substitutes with extreme valuations: observed in cable

and satellite TV providers with “basic” bundle plus pay-per-view for things like boxing

matches, other information goods

Note: results hold independent of ci ≥ 0 but for pmax <∞.
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Tool for proofs – majorization of vectors: v is majorized by w (v ≺ w)

l∑
i=1

v[i] ≤
l∑
i=1

w[i], l = 1, . . . , k − 1

k∑
i=1

v[i] =

k∑
i=1

w[i]

v[1] ≥ . . . ≥ v[k], w[1] ≥ . . . ≥ w[k]

Natural notation for bundling analysis: v ≺ w ⇔ weights v are less diverse

w ≡
(

1

k
, . . . ,

1

k

)
︸ ︷︷ ︸
equal weights; pure bundling

≺ (w1, . . . , wk) ≺ (1, 0, . . . , 0) ≡ w︸ ︷︷ ︸
one risk; separate provision Z=X

Zw =
1

k

∑
i

Xi Zw = X1
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Examples

a = (a1, . . . , ak) ≺ b = (b1, . . . , bk)

Diversification: portfolio a is more diversified than portfolio b

Income inequality: income distribution a has less inequality than income distribution b

Bundling: a represents a “more mixed” bundle than b

Extremal examples

w =
(

1
k, . . . ,

1
k

)
: most diversified portfolio, least income inequality, pure bundle

w = (1, 0, . . . , 0): least diversified portfolio, most income inequality, separate provision

Foundations of majorization – Marshall & Olkin (11)
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Schur-convexity – Proschan (65)

A function φ : Rk
+ → R is called Schur-convex

if a ≺ b⇒ φ(a) ≤ φ(b) for all a, b ∈ Rk
+.

A function φ : Rn
+ → R is called Schur-concave

if a ≺ b⇒ φ(a) ≥ φ(b) for all a, b ∈ Rk
+.

Key example: φα(w1, ..., wn) =
∑k

i=1w
α
i

Strictly Schur-convex for α > 1

Strictly Schur-concave for α < 1.
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Examples from diversification of risk

Suppose X1, . . . , Xk iid S2(σ), α = 2, Normal distribution

• Zw = 1
k

∑
iXi =d

1√
k
X1 = 1√

k
Zw

• VaRq(Zw) = 1√
k

VaRq(Zw) < VaRq(Zw)

• diversification reduces riskiness: VaR reduced by increasing k in Zw

Now suppose X1, . . . , Xk iid S1/2(σ), α = 1/2, Levy distribution

• Zw = 1
k

∑
iXi =d

[∑k
i=1

(
1
k

)1/2
]2

X1 = kX1 = kZw

• VaRq(Zw) = kVaRq(Zw) > VaRq(Zw)

• diversification increases riskiness: VaR increased by increasing k in Zw

Note: Tails of marginals matter – opposite conclusions on benefits of diversification

Note: iid risks for now
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General results (not only for stables but for all power laws):

• moderately heavy tails α > 1 (finite first moments and above)

v ≺ w ⇒ P

(
k∑
i=1

viXi > x

)
< P

(
k∑
i=1

wiXi > x

)

• extremely heavy tails α < 1 (infinite first moments)

v ≺ w ⇒ P

(
k∑
i=1

viXi > x

)
> P

(
k∑
i=1

wiXi > x

)

Note: the bundle sale probability is a Schur-concave function of bundle component weights

if α < 1: a majorized vector of weights gives a more spread-out, less peaked, distribution

Mostly for independent risks
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What happens for α = 1?

E.g., X1, . . . , Xk iid S1(σ), α = 1, Cauchy distribution

Density

f(x) =
σ

π(σ2 + x2)
Heavy power law tails

P(|X| > x) ≈
C

x
Infinite first moment

Bundling has no effect at all

Zw =

k∑
i=1

wiXi =d X1, for any wi ≥ 0,
∑
i

wi = 1
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What are the “certain dependence structures”?

Dependence structure 1: Model with common shocks

(X1, . . . , Xk) = (ZY1, . . . , ZYk)

where Y = (Y1, . . . , Yk) iid from Sα(σ), α ∈ (0, 2], and Z ≥ 0 : arbitrary positive

r.v., independent of Y ; a common shock to all valuations

• exhibit both dependence and heavy tails in marginals

– α < 1 : infinite first moments of marginals

– α > 1 : E|Xi|p <∞ if EZp <∞ and E|Yi|p <∞
so if EZ =∞ then infinite first moment too

Note: If tail index of Z > α then v(B) =
(∑

i∈BXi

)r
have tail index α/r, while X

has tail index α, so Ev(B) <∞ if r < α < 1 and Ev(B) =∞ if α < min{1, r}.

If tail index of Z < α then the order-p moment of valuations is finite iff the tail index of

Z is in [pr, 1].
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Bundling and dependence

Dependence matters: extreme examples

Minimize PC(w1X1 + w2X2 > x) s.t. w1, w2 ≥ 0, w1 + w2 = 1

Recall: Optimal bundle under independence:

α > 1 α < 1

⇓ ⇓(
1

2
,
1

2

)
(1, 0)

single bundle separate provision

Now look at extreme dependence

28 of 40



Bundling and dependence

Extreme positive dependence

X1 = X2 (a.s.), ie comonotonic risks

PC(w1X1 + w2X2 > x) = PC(X1 > x)∀w

no effect on exceedance probability (similar to Cauchy) regardless of heavy-tailedness

Extreme negative dependence

X1 = −X2 (a.s.), ie countermonotonic risks

PC(w1X1 + w2X2) = PC[(w1 − w2)X1]∀w

optimal to diversify fully wj = 1
2 (similar to Normal) regardless of heavy-tailedness

Point: Optimal bundling affected by both dependence and properties of marginals
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Bundling under copulas and power law marginals

Let f(·;α) denote power law marginal pdf, and c(·, ·; ρ) denote a copula

P

w1X1 + w2X2︸ ︷︷ ︸
w′X

> x

 =

∫
w′z>x

f(z1;α)f(z2;α)c (F (z1;α), F (z2;α); ρ) dz,

Note: No general solution in terms of P(X1 > x)

Whether bundling increases the probability of sale depends on interplay of α and ρ.

But for some families we can say more
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Bundling: EFGM Copula and Heavy Tails

Recall EFGM copula

C(u, v, ρ) = uv(1 + ρ(1− u)(1− v))

c(u, v, ρ) = 1 + ρ(2u− 1)(2v − 1)

Add power law marginals

P(X1 > x) = P(X2 > x) = x
−α
, x ≥ 1

Then

PC (w1X1 + w2X2 > x) =

∫
w′z>x

f(z1;α)︸ ︷︷ ︸
αz−α−1

1

f(z2;α)︸ ︷︷ ︸
αz−α−1

2

c (F (z1;α), F (z2;α); ρ)︸ ︷︷ ︸
1+ρ(1−2zα1 )(1−2zα2 )

dz,
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Let (ξ1(α1), ξ2(α2)) be independent power law rv; let w1 = w2 = 1/2

Key component
∫
s+t
2 >z

f1(s)f2(t)(1− 2F1(s))(1− 2F2(t))dsdt

=

∫
s+t
2 >z

α
2
s
−α−1

t
−α−1

(2s
−α − 1)(2t

−α − 1)dsdt

= 4α
2
∫
s+t
2 >z

s
−2α−1

t
−2α−1

dsdt︸ ︷︷ ︸
P
(
ξ1(2α)+ξ2(2α)

2 >z

)
−2α

2
∫
s+t
2 >z

s
−2α−1

t
−α−1

dsdt︸ ︷︷ ︸
P
(
ξ1(2α)+ξ2(α)

2 >z

)

−2α
2
∫
s+t
2 >z

s
−α−1

t
−2α−1

dsdt︸ ︷︷ ︸
P
(
ξ1(α)+ξ2(2α)

2 >z

)
+α

2
∫
s+t
2 >z

s
−α−1

t
−α−1

dsdt︸ ︷︷ ︸
P
(
ξ1(α)+ξ2(α)

2 >z

)

All terms are probabilities under independence
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For independent power laws, there are asymptotic results as z →∞:

for all β > 0,

P
(ξ1(β) + ξ2(β)

2
> z
)
∼ 2P(ξ1(β) > 2z) ∼ 2

1−β
z
−β

for β1 < β2,

P
(ξ1(β1) + ξ2(β2)

2
> z
)
∼ P(ξ1(β1) > 2z) ∼ 2

−β1z
−β1

Point: we can express PC
(
X1+X2

2 > z
)

in terms of P
(
ξ1(α)+ξ2(α)

2 > z
)
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Theorem: Schur-concavity under EFGM and heavy tails

• Moderately heavy tails α > 1: finite first moments

PC
(
X1 +X2

2
> x

)
< P(X1 > x), for sufficiently large valuations

• Extremely heavy tails α < 1: infinite first moments

PC
(
X1 +X2

2
> x

)
> P(X1 > x), for sufficiently large valuations

Key restriction: Asymptotics w.r.t. x→∞
Key conclusion: Same threshold value for α as for iid case
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Extensions: Power-Type Copulas

k-dimensional EFGM

C(u1, . . . , uk; ρ) =

k∏
t=1

ut(1 + ρ(1− u1) . . . (1− uk))

where ρ ∈ [−1, 1]

Power copula

C(u1, . . . , uk; ρ) =
k∏
t=1

ut(1 + ρ(u
l
1 − u

l+1
1 ) . . . (u

l
k − u

l+1
k ))

where l ≥ 0 (EFGM: l = 0)
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Extensions: Power-Type Copulas

Generalized EFGM

C(u1, . . . , uk; ρ) =

k∏
t=1

ut

1 +

k∑
t=2

∑
1≤j1<...<jk≤k

ρj1...jk(1− uj1) . . . (1− ujk)


where ρj ∈ [−1, 1]

Polynomial copulas

C(u1, u2; ρ) = u1u2

1 +

k+q≤m−2∑
k≥1,q≥1

ρkq(u
k
1 − 1)(u

q
2 − 1)


Copula with cubic section

C(u1, u2; ρ) = u1u2 + 2ρu1u2(1− u1)(1− u2)(1 + u1 + u2 − 2u1u2)
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Iterated EFGM

C(u.v) = uv[1 + α(1− u)(1− v) + βuv(1− u)(1− v)]

C(u.v) = uv[1 + α(1− u)(1− v) + β(1− u2
)(1− v2

)]

C(u, v) = uv +
∑
j

αj(uv)
1/2

[(1− u)(1− v−)]
(j+1)/2

Sarmanov copula

C(u.v) = uv[1 + 3α(1− u)(1− v) + 5α
2
(1− u)(1− 2u)(1− v)(1− 2v)]

Bairamov-Kotz copula

C(u.v) = uv[1 + α(1− uα)
β
(1− vα)

β
]
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Bernstein-Kantorovich copula

cJ(u) =

J−1∑
v1=0

· · ·
J−1∑
vk=0

γv

k∏
l=1

J!

vl!(J − vl − 1)!
u
vl
l (1− ul)J−vl−1︸ ︷︷ ︸

β-density

Yet, this does not cover the entire class of copula functions!
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Extensions: First Order Approximations

Ali-Mikhail-Haq

C(u1, . . . , uk; ρ) = (1− ρ)
[

k∏
i=1

(
1− ρ
ui

+ ρ

)
− ρ
]−1

Frank: Archimedian

C(u1, u2; ρ) = −
1

ρ
ln

[
1 +

(e−ρu1 − 1)(e−ρu2 − 1)

e−ρ − 1

]

Plackett: Tail dependent

C(u1, u2; ρ) =
1 + (ρ− 1)(u1 + u2)−

√
(1 + (ρ− 1)(u1 + u2))2 − 4ρ(ρ− 1)u1u2

2(ρ− 1)
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Concluding remarks

• We have looked at optimal bundling for heavy tailed valuations with arbitrary

dependence

• We have shown that when marginals are extremely heavy tailed (α < 1) and/or have

a certain large but not comprehensive class of dependence structures the conventional

predictions of optimal bundling behavior of multiproduct monopolist are reversed

• More on heavy tails and copulas in the book:

World Scientific
World Scientific
www.worldscientific.com
9644 hc

ISBN 978-981-4689-79-3

Heavy Tails
 Copulas

Heavy Tails and Copulas offers a unified approach 
to the study of crises, large fluctuations, 
dependence and contagion effects in economics 
and finance. It covers important topics in statistical 
modeling and estimation, which combine the 
notions of copulas and heavy tails — two 
particularly valuable tools of today's research in 
economics, finance, econometrics and other fields 
— in order to provide a new way of thinking about 
such vital problems as diversification of risk and 
propagation of crises through financial markets 
due to contagion phenomena, among others. The 
aim is to arm today's economists with a toolbox 
suited for analyzing multivariate data with many 
outliers and with arbitrary dependence patterns. 
The methods and topics discussed and used in 
the book include, in particular, majorization theory, 
heavy-tailed distributions and copula functions 
— all applied to study robustness of economic, 
financial and statistical models and estimation 
methods to heavy tails and dependence.

Rustam Ibragimov
Artem Prokhorov
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