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Unpleasant surprises

$2B San Francisco transit center closed due to cracks

Photo: KQED and NBC
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Emerging challenges
Automation in design, manufacturing, construction

Custom design, unique settings, novel material, evolving demand

Uncertain loads; climate adaptation

Pressure on cost and resource usage

optimization under uncertainty
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Emerging challenges
Automation in design, manufacturing, construction

Custom design, unique settings, novel material, evolving demand

Uncertain loads; climate adaptation

Pressure on cost and resource usage

optimization under uncertainty

Need to leverage:

◮ computing power and data storage

◮ sensing capability

◮ data analytics

◮ predictive models of social, physical, and cyber systems
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Case study: design of high-speed vessel
novel concept and material with complicated physics
multi-disciplinary

Hydro Structural Aero

nd Design Problem (Phase 2a and beyond): 

Hydro Aero Structural Design of HY SWATH Hull

Hydrodynamic Optimization of the Hull

Aero Optimization of the WIG

Structural Strength
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nd Design Problem (Phase 2a and beyond): 

Hydro Aero Structural Design of HY SWATH Hull

Hydrodynamic Optimization of the Hull

Aero Optimization of the WIG

Structural Strength

1: Design Under Uncertainty (DUU) of an unconventional Hybrid Hydrofoil HY SWATH.

of Phase 1 is on the hydrodynamics while Phase 2 is on the multi-disciplinary

ves of 0-6 months (Q1

Task 1 – Deep Networks: To investigate new algorithms for deep networks in order to

developing nonlinear multi-fidelity information fusion algorithms

ve capacity of specific deep network designs. Demonstration using

fabricated random functions for a moderate number of dimensions.

Task 2 – Scalable Algorithms: Develop algorithms of linear complexity both for high-

data. Demonstration for model inversion problems in up to

involving data-sets with up to 1M observations.

Task 3 – Risk-averse Optimization: Formulate risk-averse decision models for 3D super-

cavitating hydrofoil (SCH). Develop a plan for the design of the vessel using set-based design

Task 4 – MZ (MZ) formulation for

e to solve the forward UQ problem.
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Role of probability and statistics
Early approaches: tradition, testing, safety factors

Emerging uncertainty quantification:
Benjamin & Cornell ’70; Ang & Tang ’75
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Role of probability and statistics
Early approaches: tradition, testing, safety factors

Emerging uncertainty quantification:
Benjamin & Cornell ’70; Ang & Tang ’75

Random variable Y modeling system response
(e.g., Y = load − strength)

Cornell ’69: reliability index −µ(Y )/σ(Y )

Hasofer & Lind ’74: for Y = a⊤V + b, with normal vector V
standardize: Y = ã⊤U + b̃

HL-reliability index: distance from origin to ã⊤u + b̃ = 0

1
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A nonnormal world . . .

displacement [m]
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Uncertain tip displacement of hydrofoil under random cavitation
index and material properties
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Failure probability
Rackwitz & Fiessler ’78: for Y = g(U), possibly nonlinear
linearization of g at nearest point to origin (FORM)
probability of failure: Prob(Y > 0) ≈ Φ(−β)

1

= 0
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Failure probability
Rackwitz & Fiessler ’78: for Y = g(U), possibly nonlinear
linearization of g at nearest point to origin (FORM)
probability of failure: Prob(Y > 0) ≈ Φ(−β)

1

= 0

Would like to optimize the design:

◮ g also depends on design variables x

◮ FORM: bilevel optimization (lack of constraint qualification)

◮ Direct optimization of Prob(g(x ,V ) > 0) difficult
(nonconvex, noncontinuous)
Uryasev ’95; Royset & Polak ’07; Van Ackooij & Henrion ’14
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More comprehensive: probability distribution
Performance-based engineering ’90s: estimate the distribution
Hazard, structural, damage, loss analysis (Gunay & Mosalam ’13)
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50-year loss from earthquakes in Vancouver area (billon CAD)
Mahsuli & Haukaas, 2013
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How to compare probability distributions?

Design 1: uncertain response Z1

Design 2: uncertain response Z2

pdf of pdf of 

1 1

1

1.67 0.33

Which design is less uncertain, safer?

Concern about upper tail (displacement, stress, cost)
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Details

pdf of pdf of 

1 1

1

1.67 0.33

same mean (−0.33) and std. dev. (0.87)

Prob(Z1 > 0) = 0.25 (better) and Prob(Z2 > 0) = 0.31

Failure probability doesn’t account for magnitude of exceedance
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Superquantile risk

Risk assessment in finance: Rockafeller & Uryasev ’00, ’02 (CVaR);
Acerbi & Tasche ’02 (exp. shortfall); Föllmer & Schied ’04 (AVaR)
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Superquantile risk

Risk assessment in finance: Rockafeller & Uryasev ’00, ’02 (CVaR);
Acerbi & Tasche ’02 (exp. shortfall); Föllmer & Schied ’04 (AVaR)

For α ∈ [0, 1], the α-superquantile of random variable Z :

Rα(Z ) = average of (1− α)100% worst outcomes of Z

pdf of 

1 1( )

1

1

R0(Z ) = E[Z ]; R1(Z ) = worst outcome of Z

Z1 safely below Z2 when Rα(Z1) ≤ Rα(Z2)
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Return to triangular example

Design 1: uncertain response Z1

Design 2: uncertain response Z2

pdf of pdf of 

1 1

1

1.67

( )

( )

Averages of worst 10% outcomes:

R0.9(Z1) = 0.58 and R0.9(Z2) = 0.28 (better)

Response of Design 2 safely below that of Design 1
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Advantages of superquantile risk (s-risk)

Modeling considerations:

adapts to any level of “safety” (can vary α)

focuses on the “bad” tail (promotes resilience)

promotes diversification

connects with dual utility theory

probes deeper than expected utility theory

relates to risk-neutral decisions under stochastic ambiguity

Computational considerations:

preserves convexity (continuity)

easier to find globally optimal designs and decisions

when using s-risk,
optimization under uncertainty “no harder” than deterministic
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Connection: failure probability and superquantile risk

Superquantiles lead to a (best) conservative approximation of
failure probability through buffered failure probability
(Rockafellar & Royset ’10, Norton et al. ’17, Mafusalov et al. ’18):

Rα

(

g(x ,V )
)

≤ 0

⇐⇒ buffered failure probability of g(x ,V ) ≤ 1− α

=⇒ Prob
(

g(x ,V ) > 0
)

≤ 1− α

Constraints on s-risk can be reinterpreted in probabilistic terms
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Risk-adaptive learning and surrogate building
Response g(x ,V ) costly to compute (high-fidelity simulation)

Leverage approximating responses h(x ,V ) (low-fidelity simulations)
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(

g(x ,V )
)

≤ Rα

(

f (h(x ,V ))
)

Flexibility: h(x , v) vector-valued, possibly hj(x , v) = xj , etc.

Example: ĥ(x , v) = lower-level surrogate and f
(
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Response g(x ,V ) costly to compute (high-fidelity simulation)

Leverage approximating responses h(x ,V ) (low-fidelity simulations)

Risk-adaptive surrogate building:

find function f such that g(x ,V ) safely below f
(

h(x ,V )
)

i.e., Rα

(

g(x ,V )
)

≤ Rα

(

f (h(x ,V ))
)

Flexibility: h(x , v) vector-valued, possibly hj(x , v) = xj , etc.

Example: ĥ(x , v) = lower-level surrogate and f
(

h(x , v)
)

=

a0+a⊤x+ c⊤v +b0ĥ(x , v)+ ā⊤xĥ(x , v)+ c̄⊤v ĥ(x , v)+b[ĥ(x , v)]2

Finding f amounts to finding coefficients a0, a, ā, b0, b, c , c̄

Notation: Y = g(x ,V ), X = h(x ,V ); view x as “random” over
design space (set-based design)
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Risk-adaptive learning and surrogates (cont.)

Response quantity: random variable Y (high-fidelity simulation)

Approximations: random vector X (low-fidelity simulations)

Find f such that Rα(Y ) ≤ Rα

(

f (X )
)
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Risk-adaptive learning and surrogates (cont.)
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Risk-adaptive learning and surrogates (cont.)

Response quantity: random variable Y (high-fidelity simulation)

Approximations: random vector X (low-fidelity simulations)

Find f such that Rα(Y ) ≤ Rα

(

f (X )
)

How can this be achieved without being overly conservative?

Reasonable: minimize the error of Y − f (X )

But using what measure of error? Least-squares will not do

Superquantile regression possible (but not discussed here)
(Rockafellar, Royset, Miranda ’14)

16 / 27



Risk-adaptive learning algorithm

For simplicity, f (X ) = c0 + c⊤X , with c ∈ R
k

Two-step algorithm:

1. Solve min
c∈Rk

{

c⊤E[X ] + Rα(Y − c⊤X )
}

+ λ‖c‖1

2. Set c0 = Rα(Y − c⊤X )

Step 1 (Residual risk minimization)
convex problem; scalable
problem size is data independent
resembling problem in SVM

Step 2 (s-risk computation)
either 1D convex problem or sorting (quick)

Rockafellar & Royset ’15a; Royset, Bonfiglio, Vernengo, Brizzolara ’17
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Theoretical results

Conservative surrogate on training data:
For α ∈ (0, 1) and (c0, c) computed by risk-adaptive learning,

Rα(Ỹ ) ≤ Rα(c0 + c⊤X̃ )

with (X̃ , Ỹ ) distributed according to training data

Rockafellar, Uryasev, Zabarankin ’08; Rockafellar & Royset ’15a
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Conservative surrogate on training data:
For α ∈ (0, 1) and (c0, c) computed by risk-adaptive learning,

Rα(Ỹ ) ≤ Rα(c0 + c⊤X̃ )

with (X̃ , Ỹ ) distributed according to training data

Consistency:
For α ∈ (0, 1) and (c0, c) computed by risk-adaptive learning,

Rα(Y ) ≤ Rα(c0 + c⊤X ) in the limit as training size → ∞

with (X ,Y ) having the actual (true) distribution

Rockafellar, Uryasev, Zabarankin ’08; Rockafellar & Royset ’15a
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Multi-disciplinary 3D hydrofoil design

Surface-piercing super-cavitating hydrofoil

17 design variables; 5 uncertain parameters

Quantities of interest: hydrodynamical and structural

308 high-fidelity 3D URANSE solves
3063 high-fidelity 3D FEM solves
19830 low-fidelity 3D URANSE solves and 3D FEM solves

Hydro Structural Aero

nd Design Problem (Phase 2a and beyond): 

Hydro Aero Structural Design of HY SWATH Hull

Hydrodynamic Optimization of the Hull

Aero Optimization of the WIG

Structural Strength
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nd Design Problem (Phase 2a and beyond): 
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Aero Optimization of the WIG

Structural Strength

1: Design Under Uncertainty (DUU) of an unconventional Hybrid Hydrofoil HY SWATH.

of Phase 1 is on the hydrodynamics while Phase 2 is on the multi-disciplinary

ves of 0-6 months (Q1

Task 1 – Deep Networks: To investigate new algorithms for deep networks in order to

developing nonlinear multi-fidelity information fusion algorithms

ve capacity of specific deep network designs. Demonstration using

fabricated random functions for a moderate number of dimensions.

Task 2 – Scalable Algorithms: Develop algorithms of linear complexity both for high-

data. Demonstration for model inversion problems in up to

involving data-sets with up to 1M observations.

Task 3 – Risk-averse Optimization: Formulate risk-averse decision models for 3D super-

cavitating hydrofoil (SCH). Develop a plan for the design of the vessel using set-based design

Task 4 – MZ (MZ) formulation for

e to solve the forward UQ problem.

Bonfiglio & Royset ’18
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Risk-adaptive learning of lift force

low fidelity output
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Accurate predictions possible
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Risk-adaptive learning of lift force (cont.)
Surrogate has 1+38 coefficients to be learned
Sparsity (model selection) across 20 surrogates:

nz = 455

0 5 10 15 20 25 30 35

0

5

10

15

20

Red, gray, orange, blue, pink, and yellow colors correspond to a, c ,
b0, ā, c̄ , and b, respectively
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Risk-adaptive learning of displacement

low fidelity output

0 0.01 0.02 0.03 0.04 0.05 0.06

h
ig

h
 f
id

e
lit

y
 o

u
tp

u
t

0

0.05

0.1

0.15

0.2

0.25

Poor correlation between low- and high-fidelity simulations
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Risk-adaptive learning of displacement (cont.)
Surrogate has 1+44 coefficients to be learned
Sparsity (model selection) across 20 surrogates:

nz = 240

0 10 20 30 40

0

5

10

15

20

Red, gray, orange, blue, pink, and yellow colors correspond to a, c ,
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Uncertainty in surrogates: lift
Not standard deviation, but superquantile deviation!
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Uncertainty in surrogates: displacement

design
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Poor low-fidelity: uncertain surrogates, but still conservative
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Impact in multi-disciplinary 3D hydrofoil design
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Prediction 0.109 0.139 36.8 −142
Actual 0.060 0.130 37.7 −410

Benchmark 0.097 0.132 35.3 −294
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