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A Basic Model in Stochastic Optimization

Information pattern: here single-stage
decision x € R" followed by observing £ € = (prob. space)
multistage extension: repeated interplay — bypassed here

Problem

minimize E¢[fo(x,€)] subject to F(x,&) € K C R™, where
K = closed convex cone, F(x,&) = (fi(x,&),..., fm(x,§))

Alternative objectives: to just minimizing an “expected cost”
e minimizing some measure of risk, or
e minimizing bPOE at some threshold

these extensions can be subsumed into the expectation model! J




Simplifying Assumption

there are finitely many scenarios £ € =, probabilities p(§) > 0 J

Problem restatement: in a simplified form
minimize ¢(x) = Zé p(&)f(x,€) over x € R",
_ [ fo(x,8) if F(x,§) € K,
where  f(x,§) = { o if &K
Convex case: occurs if each f(x,&) is convex in x, as when
e fy(x,£&) is convex with respect to x
o the set C(x,&) = {x|F(x,£) € K} is convex
Optimality condition: on X from subgradient rule 0 € dp(X)

Iw(§) € 0f(x,&) such that ZE p(&)w(&) =0

Status: sufficient for global optimality in the convex case, and
necessary for local optimality in general under a constraint qual.

Computational focus: find X and w(&) satisfying this condition



Progressive Hedging Background

Aim: reduce computations to iteratively solving subproblems
which depend only on the individual scenarios £ € =

Original algorithm (convex case) — with proximal parameter r > 0
In iteration k, having x¥ and w* (&) with Zf p(&)wk(€) =0, get
£4(¢) = argmin{ £ (x, €) — wk(€)x + 5Ix — x|}
Rn

XS = argmin{fo(x,é)—Wk(f)-x+§\|x—xk\|2}
F(x,8)eK
(taking advantage of strong convexity in x), and then update by

=T p(E)RHE),  whL(E) = wh(E) — r[RH(E) — X

.

Convergence: in convex case, global from any initial x%, w(¢)

Challenge: how to adapt this now to a nonconvex setting?
fo(x, €) not convex? C(x,&) = {x| F(x,€) € K} not convex?



Reformulation Toward Accommodating Nonconvexity

Linkage problem format: Rock. 2018
minimize a function ¢ over some “linkage” subspace S
— “progressive decoupling algorithm” that can “elicit” convexity

New context: the space £ = all (x(-), u(+)) = (x(§), u(§))ee=

Extended problem statement

min (x(), u(-)) = S pE) [6(x(€), £) + Sk F(x(€),€) + u(€)]
over the subspace S of the space £ defined by
for all £ € =, x(&) = the same x € R", while u(§) =0

Complementary subspace: orthogonal to S in £
5= {(w().y()) = W) 1(E)eez | X pE)w(e) =0}
(X)), (W), y(D) ) = 3 PLE) (x(), u())-(w(€), ()



Progressive Decoupling in this Stochastic Setting

specializing a new, very general procedure of Rock. 2018

Algorithm in “raw” form — with parameters r > e > 0
Having (x*(€), u*(€))¢cz € S and (w¥(€),y*(€))eez € S* find
(x(€),T*(€)) € argmin ¢*(x, u, &) for each & € =

where ©*(x, u, &) = fo(x, €) + ok (F(x, &) + u)
—wk(&)x =y (€)-u+ 5lIx — x*(€)I1> + §llu — u ()]
and then update by
(xkL(8), uk+1(§))§ez = projection of ()?k(f), ﬁk(f))£€E on S,

(W), y*HH(€)) = (wH(€), ¥ (€))—
(r —e)[(x(€), (€)) = (H(8), u*1(¢))]

e = elicitation parameter which needs to be “high enough”




Consolidation With the Specifics of S and S+

here x(¢) = same xk € R" for all £, while u*(&) = 0 for all ¢

Having x*, yk(¢), and wk (&) with D¢ wk(€) = 0, calculate
(xK(€),T*(€)) € argmin o¥(x, u,&) for each £ € =

xX,u

where  ©*(x, u,&) = fo(x, &) + ok (F(x,€) + u)
—wH(&)x — Y (€)-u+ 5llx — xK|[> + 5 ||ul]?
and then update by
XKL =37 p(€)x4(6), YA€) = y (&) — (r — e)i*(¢)
whFL(€) = wh(€) — (r — ) [R¥(€) — x**1]

Further consolidation: carry out the min in v in “closed form”



Refinement Utilizing Augmented Lagrangians

Lagrangian: in minimizing fy(x, &) subject to F(x,&) € K
L(x,y,&) = fo(x, &) + y-F(x,£) — dy(y) for Y = polar cone K*
= min, {fo(x,f) + 0k (F(x,&) + u) — y-u}
Augmented Lagrangian: for r > 0 and dy(y) = dist(y, Y)
Lr(x,y.€) = L(x,y,€) + 5IIF (<. §)I* — 5 (y (&) + rF(x,£))
= miny {fo(x, &) + Ok (F(x, &) + u) — y-u+ §||ul|*}
where moreover V, L.(x,y,&) = the unique u giving this min

Subminimization in the subproblems:
since " (x,u,&) = r%(x,f);féx(F(X,f) + U)k— y(€)-u+ 5lull?
—wH(E)x + 5l[x — xK|?,

min, o (x, u, &) = Li(x,y*(€), &) — wk(&)-x + §Ix — x¥|]? )
Residual computation:

e minimize the latter expression in x to get X*(¢)
o then get U*(&) as the gradient V, L, (x*(€), (), €)




Resulting Procedure and its Characteristics

Augmented progressive hedging — parameters r > e > 0
Having x¥, yk(¢), and w* (&) with D¢ wk (&) = 0, calculate
)?k(ﬁ) € argmin,, {L,(X,yk(f),f) = Wk(f)-x 4= 5|l = kaQ},

Tk(€) = V, L(X(£),7%(£), )
and then update by

X =3 p(ORK(E), YO = v (&) — (r — e)uk(€)
wiHL(E) = wh(€) — (r — e)[4(€) — x**]

Key observation: around solution elements X, y(&), w(§)
second-order optimality conditions guarantee Je such
that, when r > e, the augmented Lagrangian L,(x, y,¢)
will be convex-concave on a neighborhood of (X, y(&))

then the algorithm will converge locally as if in the convex case J
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