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The Binary Classification Problem

THE DATA:
We have samples {(X1, y1), . . . , (XN , yN)} of (X, y) where

Xi ∈ IRn: vector of features for sample i
yi ∈ {−1,+1}: class label of sample i
X+ = (X|y = +1),X− = (X|y = −1), m+ + m− = N

THE TASK:
Using the labeled samples, construct a function fθ : Rn → R that
predicts labels.

X→ fθ(X) ≤ 0 →y′ = −1

X→ fθ(X) > 0 →y′ = +1
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What would we like to solve?

Common Performance Metrics
Misclassification Rate := P(−yfθ(X) > 0)

AUC := 1− P(fθ(X+) < fθ(X−))

False Positive Rate (FPR) := P(fθ(X−) > 0)

False Negative Rate (FNR) := P(−fθ(X+) > 0)

Ideal Problem: ξ(fθ(X),X) := Error in prediction fθ(X) given input X

min
θ

P(ξ0(fθ(X),X) > 0)

s.t. P(ξ1(fθ(X),X) > 0) ≤ α
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What is usually solved?

Popular in ML: Empirical Risk

min
θ

E[`0(fθ(X),X)]

s.t. E[`1(fθ(X),X))] ≤ R

What ` do we choose? Does it sufficiently encode the true
objective /requirements/ performance metrics?

How do we set R? Particularly if E[`(fθ(X),X)] only
approximates our real performance metric.
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Example: Error type control in classification

min
θ

P(−fθ(X+) > 0)

s.t. P(fθ(X−) > 0) ≤ αfp

(1)

Scanning for explosives in the airport (DHS 1.5$ million Kaggle
competition)

Imbalanced Data Sets

Early warning detection systems
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What is Buffered Probability and why is it important?

Probability of Exceedance (POE)
Proportion of largest outcomes (losses) exceeding
threshold z ∈ R.

Buffered Probability of Exceedance (bPOE)
Proportion of largest outcomes (losses) that
average to threshold z ∈ R.
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Probability of Exceedance

Some Notation...
X:= random variable
z ∈ R:= threshold level
α ∈ [0, 1]:= probability level
Fz(X) = P(X ≤ z):= CDF

Quantile (VaR) & Probability of Exceedance (POE), Continuous Case

qα(X):= {z : P(X ≤ z) = α} =quantile of X at α ∈ [0, 1]

pz(X):= {1− α : qα(X) = z} = POE of X at level z
or equivalently, pz(X) = 1− Fz(X) = P(X > z)
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Buffered Probability of Exceedance (bPOE)

Some Notation...
X:= random variable
z ∈ R:= threshold level
α ∈ [0, 1]:=probability level

Superquantile (CVaR) & Buffered POE (bPOE), Continuous Case

q̄α(X):= E[X|X > qα(X)] = superquantile of X at α ∈ [0, 1]

p̄z(X):= {1− α : q̄α(X) = z} = bPOE of X at level z

bPOE is a generalization of Buffered Probability of Failure
Royset & Rockafellar (2010) and can be defined by
superdistribution studied by Royset & Rockafellar (2013)
bPOE studied in general context also by Mafuslalov & Uryasev
(2014)

Matthew Norton



bPOE Formula: Norton, Mafusalov, Uryasev (2014)

Let [·]+ = max{0, ·}. bPOE of X at threshold z ∈ R equals:

p̄z(X) = inf
a≥0

E[a(X − z) + 1]+ (2)

Calculation of POE
Let I{·} be 0-1 indicator. POE of X at threshold z ∈ R equals:

P(X > z) = E[I{X > z}] (3)
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Easy bPOE Optimization

Linear loss function L(w,X) = wTX with parameters w ∈ Rn and
random vector X ∈ Rn.

Minimize POE of loss at threshold z = 0 ... Hard Problem!

min
w

P(L(w,X) ≥ 0)

Minimize bPOE of loss at threshold z = 0 ... Easy Problem!

min
w

p̄0(L(w,X)) = min
w

min
a≥0

E[a(L(w,X)− 0) + 1]+

= min
w,a≥0

E[L(aw,X) + 1]+

= min
y

E[L(y,X) + 1]+
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Measuring Classifier Performance with POE

Performance = P(ξ(fθ,X) > 0)

Misclassification Rate := P(−yfθ(X) > 0)

AUC := 1− P(fθ(X+) < fθ(X−))

False Positive Rate (FPR) := P(fθ(X−) > 0)

False Negative Rate (FNR) := P(−fθ(X+) > 0)
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Measuring Classifier Performance with bPOE

Define metrics with bPOE and an error function:
Performance = p̄0(ξ(fθ,X))

Buffered Misclassification Rate := p̄0(−yfθ(X))

Equivalent to SVM when minimized (Norton, Mafusalov,
Uryasev 2017).

Buffered AUC := 1− p̄0(fθ(X−)− fθ(X+))

Equivalent to RankSVM when maximized (Norton, Uryasev
2018).

Works for Regression: Buffered Residuals := p̄ε(|fθ(X)− y|)
Equivalent to SV Regression when minimized (Norton 2018).
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Neyman-Pearson Classification

Ideal Approach: Minimize False Negative Rate such that False
Positive Rate is less than αfp ∈ [0, 1).

min
θ

P(−fθ(X+) > 0)

s.t. P(fθ(X−) > 0) ≤ αfp

(4)
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bNP classification: Primal Formulation

New Approach: Minimize Buffered False Negative Rate with
Buffered False Positive Rate constraint

Buffered False Positive Rate (bFPR) := p̄0(fθ(X−))

Buffered False Negative Rate (bFNR) := p̄0(−fθ(X+))

min
θ

p̄0(−fθ(X+))

s.t. p̄0(fθ(X−)) ≤ αfp
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bNP classification: The Linear Case

Assume linear f and modify error function to be class-specific margin
error and consider non-zero threshold z ∈ R.

ξ(f ,X)→ −y(wTX + b))

‖w‖2

min
w,b

p̄z

(
−wTX+ − b
‖w‖2

)
≡ min

w,b,γ
E[−wTX+ − b + 1]+ − z‖w‖2

2

s.t. p̄0

(
wTX− + b
‖w‖2

)
≤ αfp γ +

E[wTX− + b− γ]+

αfp
≤ 0
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bNP classification: Dual Formulation and Connection to
SVM’s

max
β

∑
i|yi=+1

βi +
1
4z

N∑
i=1

N∑
j=1

yiyjβiβjXT
i Xj

s.t. 0 ≤ βi ≤
1

m+
, if yi = +1

0 ≤ βi ≤
1

m−αfp

∑
i|yi=−1

βi , if yi = −1

∑
i

yiβi = 0

QP with linear constraints

Optimal solution has
support vector expansion.
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bNP classification: Dual Formulation and Connection to
SVM’s

max
β

∑
i|yi=+1

βi +
1
4z

N∑
i=1

N∑
j=1

yiyjβiβjk(Xi,Xj)

s.t. 0 ≤ βi ≤
1

m+
, if yi = +1

0 ≤ βi ≤
1

m−αfp

∑
i|yi=−1

βi , if yi = −1

∑
i

yiβi = 0

Can use Kernel Trick for
non-linear classification.

k(Xi,Xj) = φ(Xi)
Tφ(Xj)

φ : Rn → Rd, d >> n.

e.g.
k(Xi,Xj) = e−c‖Xi−Xj‖2
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bNP classification: Experiments

Trade-off curves for many αfp compared to baseline C-SVM for two
datasets, Spam Detection (Left) and Credit Default Prediction (Right).
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Thank You!

Thank You!
Questions?
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