
THE PROGRESSIVE HEDGING ALGORITHM IN
NONCONVEX STOCHASTIC OPTIMIZATION

Terry Rockafellar
University of Washington, Seattle
University of Florida, Gainesville

Risk Management Approaches in Engineering Applications
Workshop, University of Florida, Gainesville

1–2 October 2018



A Basic Model in Stochastic Optimization

Information pattern: here single-stage
decision x ∈ IRn followed by observing ξ ∈ Ξ (prob. space)
multistage extension: repeated interplay —- bypassed here

Problem

minimize Eξ
[
f0(x , ξ)

]
subject to F (x , ξ) ∈ K ⊂ IRm, where

K = closed convex cone, F (x , ξ) = (f1(x , ξ), . . . , fm(x , ξ))

Alternative objectives: to just minimizing an “expected cost”

• minimizing some measure of risk, or

• minimizing bPOE at some threshold

these extensions can be subsumed into the expectation model!



Simplifying Assumption

there are finitely many scenarios ξ ∈ Ξ, probabilities p(ξ) > 0

Problem restatement: in a simplified form
minimize ϕ(x) =

∑
ξ
p(ξ)f (x , ξ) over x ∈ IRn,

where f (x , ξ) =

{
f0(x , ξ) if F (x , ξ) ∈ K ,

∞ if 6∈ K
Convex case: occurs if each f (x , ξ) is convex in x , as when
• f0(x , ξ) is convex with respect to x
• the set C (x , ξ) =

{
x
∣∣F (x , ξ) ∈ K

}
is convex

Optimality condition: on x̄ from subgradient rule 0 ∈ ∂ϕ(x̄)

∃ w̄(ξ) ∈ ∂f (x̄ , ξ) such that
∑

ξ
p(ξ)w̄(ξ) = 0

Status: sufficient for global optimality in the convex case, and
necessary for local optimality in general under a constraint qual.

Computational focus: find x̄ and w̄(ξ) satisfying this condition



Progressive Hedging Background

Aim: reduce computations to iteratively solving subproblems
which depend only on the individual scenarios ξ ∈ Ξ

Original algorithm (convex case) — with proximal parameter r > 0

In iteration k , having xk and wk(ξ) with
∑

ξ
p(ξ)wk(ξ) = 0, get

x̂k(ξ) = argmin
x∈IRn

{
f (x , ξ)− wk(ξ)·x + r

2 ||x − xk ||2
}

= argmin
F (x ,ξ)∈K

{
f0(x , ξ)− wk(ξ)·x + r

2 ||x − xk ||2
}

(taking advantage of strong convexity in x), and then update by

xk+1 =
∑

ξ
p(ξ) x̂k(ξ), wk+1(ξ) = wk(ξ)− r

[
x̂k(ξ)− xk+1

]
Convergence: in convex case, global from any initial x0, w0(ξ)

Challenge: how to adapt this now to a nonconvex setting?

f0(x , ξ) not convex? C (x , ξ) =
{
x
∣∣F (x , ξ) ∈ K

}
not convex?



Reformulation Toward Accommodating Nonconvexity

Linkage problem format: Rock. 2018
minimize a function ϕ over some “linkage” subspace S

−→ “progressive decoupling algorithm” that can “elicit” convexity

New context: the space L = all (x(·), u(·)) = (x(ξ), u(ξ))ξ∈Ξ

Extended problem statement

min ϕ(x(·), u(·)) =
∑

ξ p(ξ)
[
f0(x(ξ), ξ) + δK

(
F (x(ξ), ξ) + u(ξ)

)]
over the subspace S of the space L defined by

for all ξ ∈ Ξ, x(ξ) = the same x ∈ IRn, while u(ξ) = 0

Complementary subspace: orthogonal to S in L
S⊥ =

{
(w(·), y(·)) = (w(ξ), y(ξ))ξ∈Ξ

∣∣∣ ∑ξ
p(ξ)w(ξ) = 0

}
〈

(x(·), u(·)), (w(·), y(·))
〉

=
∑

ξ
p(ξ) (x(ξ), u(ξ))·(w(ξ), y(ξ))



Progressive Decoupling in this Stochastic Setting

specializing a new, very general procedure of Rock. 2018

Algorithm in “raw” form — with parameters r > e ≥ 0

Having (xk(ξ), uk(ξ))ξ∈Ξ ∈ S and (wk(ξ), yk(ξ))ξ∈Ξ ∈ S⊥ find

(x̂k(ξ), ûk(ξ)) ∈ argmin
x ,u

ϕk(x , u, ξ) for each ξ ∈ Ξ

where ϕk(x , u, ξ) = f0(x , ξ) + δK (F (x , ξ) + u)
−wk(ξ)·x − yk(ξ)·u + r

2 ||x − xk(ξ)||2 + r
2 ||u − uk(ξ)||2

and then update by

(xk+1(ξ), uk+1(ξ))ξ∈Ξ = projection of
(
x̂k(ξ), ûk(ξ)

)
ξ∈Ξ

on S,

(wk+1(ξ), yk+1(ξ)) = (wk(ξ), yk(ξ))−
(r − e)

[
(x̂k(ξ), ûk(ξ))− (xk+1(ξ), uk+1(ξ))

]
e = elicitation parameter which needs to be “high enough”



Consolidation With the Specifics of S and S⊥

here xk(ξ) = same xk ∈ IRn for all ξ, while uk(ξ) = 0 for all ξ

Having xk , yk(ξ), and wk(ξ) with
∑

ξ w
k(ξ) = 0, calculate

(x̂k(ξ), ûk(ξ)) ∈ argmin
x ,u

ϕk(x , u, ξ) for each ξ ∈ Ξ

where ϕk(x , u, ξ) = f0(x , ξ) + δK (F (x , ξ) + u)
−wk(ξ)·x − yk(ξ)·u + r

2 ||x − xk ||2 + r
2 ||u||

2

and then update by

xk+1 =
∑

ξ p(ξ)x̂k(ξ), yk+1(ξ) = yk(ξ)− (r − e)ûk(ξ)

wk+1(ξ) = wk(ξ)− (r − e)
[
x̂k(ξ)− xk+1

]
Further consolidation: carry out the min in u in “closed form”



Refinement Utilizing Augmented Lagrangians

Lagrangian: in minimizing f0(x , ξ) subject to F (x , ξ) ∈ K

L(x , y , ξ) = f0(x , ξ) + y ·F (x , ξ)− δY (y) for Y = polar cone K ∗

= minu

{
f0(x , ξ) + δK (F (x , ξ) + u)− y ·u

}
Augmented Lagrangian: for r > 0 and dY (y) = dist(y ,Y )

Lr (x , y , ξ) = L(x , y , ξ) + r
2 ||F (x , ξ)||2 − 1

2r d
2
Y (yk(ξ) + rF (x , ξ))

= minu

{
f0(x , ξ) + δK (F (x , ξ) + u)− y ·u + r

2 ||u||
2
}

where moreover ∇yLr (x , y , ξ) = the unique u giving this min

Subminimization in the subproblems:
since ϕk(x , u, ξ) = f0(x , ξ) + δK (F (x , ξ) + u)− yk(ξ)·u + r

2 ||u||
2

−wk(ξ)·x + r
2 ||x − xk ||2,

minu ϕ
k(x , u, ξ) = Lr (x , yk(ξ), ξ)− wk(ξ)·x + r

2 ||x − xk ||2

Residual computation:
• minimize the latter expression in x to get x̂k(ξ)
• then get ûk(ξ) as the gradient ∇yLr (x̂k(ξ), ŷk(ξ), ξ)



Resulting Procedure and its Characteristics

Augmented progressive hedging — parameters r > e ≥ 0

Having xk , yk(ξ), and wk(ξ) with
∑

ξ w
k(ξ) = 0, calculate

x̂k(ξ) ∈ argminx
{
Lr (x , yk(ξ), ξ)− wk(ξ)·x + r

2 ||x − xk ||2
}

,

ûk(ξ) = ∇yLr (x̂k(ξ), ŷk(ξ), ξ)
and then update by

xk+1 =
∑

ξ p(ξ)x̂k(ξ), yk+1(ξ) = yk(ξ)− (r − e)ûk(ξ)

wk+1(ξ) = wk(ξ)− (r − e)
[
x̂k(ξ)− xk+1

]
Key observation: around solution elements x̄ , ȳ(ξ), w̄(ξ)

second-order optimality conditions guarantee ∃ e such
that, when r > e, the augmented Lagrangian Lr (x , y , ξ)
will be convex-concave on a neighborhood of (x̄ , ȳ(ξ))

then the algorithm will converge locally as if in the convex case
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