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Stochastic Programming Problem

Consider a stochastic programming (SP) problem:

min
x: 0≤x≤R

{F (x) := EPf(x,W )}

f deterministic. For every feasible x, the function f(x, · ) is measurable and
F (x) is finite

We assume box constraints for simplification of analysis

Commonly solved via sample average approximation (SAA), a.k.a. Monte
Carlo (Sampling) Method
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Problem Statement

Sample Average Approximation

To solve:

xmin ∈ arg min
x: 0≤x≤R

{F (x) := EPf(x,W )}

Solve instead an approximation problem

min
x: 0≤x≤R

Fn(x) := n−1
n∑
j=1

f(x,Wj)


• {W1,W2, ...,Wj , ...,Wn} is a sequence of samples of W
• Simple to implement
• Often tractably computable

SAA is a popular way of solving SP
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Problem Statement

Efficacy of SAA

Assumptions: i.i.d., subgaussian and Lipschitz-like conditions.

Number of samples n required to achieve ε accuracy with probability 1− α
in solving an p-dimensional problem:

P[F (xSAA)− F (xmin) ≤ ε] ≥ 1− α

if n is large enough to satisfy1,2,3

n &
p

ε2
ln

1

ε
+

1

ε2
ln

1

α

Sample size n grows polynomially when number of dimensions p increases

1
Shapiro (2003) Stochastic Programming, Handbook in OR & MS

2
Shapiro et al. (2009) Lectures on Stochastic Programming Modeling and Theory

3
Shapiro & Xu (2008) Optimization
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Problem Statement

High-Dimensional SP

Question 1: What if p� n and acquiring new samples is prohibitively
costly?

Question 2: What if most dimensions are ineffective, e.g.,
xmin = [80; 131; 100; 0; 0; ....; 0; 0]?

For example:

I Consider a problem with p = 100, 000, where SAA requires
n ≥ 100, 000 ∼ 10, 000, 000

I If it is known which dimensions (10 of them) are nonzero, the original
problem can be reduced to p = 10, and then n ≥ 10 ∼ 1, 000

Conventional SAA is not effective in solving high-dimensional SP
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Problem Statement

Regularized Sample Average Approximation (RSAA)
The RSAA formulation

min
x: 0≤x≤R

{
Fn,λ(x) := Fn(x) +

p∑
i=1

Pλ(xi)

}
Pλ : <+ → <+: minimax concave penalty (MCP):4
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Pλ(τ) :=

∫ τ

0

(aλ− t)+
a

dt

=

{
λτ − τ2

2a if 0 ≤ τ ≤ aλ;
1
2aλ

2 if τ > aλ.

a > 0 and λ > 0 are penalty parameters

RSAA = SAA + MCP penalty
4
Zhang, 2010, Ann. Stats.; Fan and Li, 2001, JASA
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Regularized SAA to exploit sparsity

Section 2

Regularized SAA to exploit sparsity
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Regularized SAA to exploit sparsity

The S3ONC Solutions

Assume f(·,W ) twice differentiable for almost every W

First-order necessary condition (FONC): The solution x∗ ∈ [0, R]p satisfies that

〈∇Fn(x∗) + (P ′λ(x∗i ) : 1 ≤ i ≤ p), x− x∗〉 ≥ 0, ∀x ∈ [0, R]p

Significant subspace second-order necessary condition (S3ONC): The solution
x∗ := (x∗i : 1 ≤ i ≤ p) ∈ [0, R]p satisfies FONC. Furthermore, for all
i ∈ {i : x∗i ∈ (0, min{1, aλ})}, it holds that

∂2Fn,λ(x)

(∂xi)2

∣∣∣∣
x=x∗

≥ 0

if
∂2Fn,λ(x)

(∂xi)2

∣∣∣
x=x∗

exists.

S3ONC is weaker than the second-order KKT condition
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Regularized SAA to exploit sparsity

Result I: Efficacy of RSAA
Theorem 1
Assumptions:

(a) f(x,W ) is subgaussian for any x ∈ [0, R]p

(b) f(·,W ) is twice differentiable and convex for almost every W

(c) Lipschitz-like condition

(d) The true solution is sparse, i.e., ‖xmin‖0 ≤ s

Consider an S3ONC solution x∗. If Fn,λ(x∗) ≤ Fn,λ(0) almost surely, and if the sample
size n satisfies

n &
s2.5

ε4

(
ln
p

ε

)2
+

1

ε2
ln

1

α
(1)

then P [F (x∗)− F (xtrue) ≤ ε] ≥ 1− α.

RSAA has improved dependence on p v.s. the conventional SAA, n & p
ε2 ln 1

ε + 1
ε2 ln 1

α
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Regularized SAA to exploit sparsity

Benefit of RSAA: Poly-Logarithmic Dependence in p
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Traditional
Regularized

RSAA: Compensation of exponential growth in p by increasing n polynomially
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Regularized SAA to exploit sparsity

Result II: Efficacy of RSAA Under Additional Regularity

Theorem 2

Assumptions:

The same set of assumptions as in Theorem 1

F is strongly convex and continuously differentiable

Consider an S3ONC solution x∗. If Fn,λ(x∗) ≤ Fn,λ(0) almost surely, and if the
sample size n satisfies

n &
s1.5

ε3

(
ln
p

ε

)1.5
+

1

ε2
ln

1

α

then P
[
F (x∗)− F (xtrue) ≤ ε

]
≥ 1− α.

Better than both

Conventional SAA: n & p
ε2

ln 1
ε + 1

ε2
ln 1

α

RSAA without strong convexity: n & s2.5

ε4

(
ln p

ε

)2
+ 1

ε2
ln 1

α
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Regularized SAA to exploit sparsity

Result III: Efficacy of RSAA Under Additional Regularity

Theorem 3

Assumptions:

The same set of assumptions as in Theorem 2

min{|xmin
i | : |xmin

i | 6= 0, i = 1, ..., p} ≥ threshold

Consider an S3ONC solution x∗. If Fn,λ(x∗) ≤ Fn,λ(0) almost surely, and if the
sample size n satisfies

n &
s

ε2
ln
p

ε
+

1

ε2
ln

1

α

then P
[
F (x∗)− F (xtrue) ≤ ε

]
≥ 1− α.

Much better than conventional SAA: n & p
ε2

ln 1
ε + 1

ε2
ln 1

α . Substantially better
rate in p without compromise on the rate in ε.
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Regularized SAA to exploit sparsity

Result IV: Efficacy of RSAA Under the Least Regularities

Theorem 4

Assumptions:

f(x,W ) is subgaussian for any x ∈ [0, R]p

f(·,W ) is twice differentiable for almost every W

The true solution is sparse, i.e., ‖xmin‖0 ≤ s
Lipschitz-like condition

Consider the global minimal solution x∗. If

n &
s

ε3

(
ln
p

ε

)1.5
+

1

ε2
ln

1

α

then P
[
F (x∗)− F (xtrue) ≤ ε

]
≥ 1− α.
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Summary of Results

n & Global
f( · ,W )
convex

F strongly
convex

& differen
-tiable

mini∈S x̂
min
i

≥ threshold

SAA p
ε2

ln 1
ε

+ 1
ε2

ln 1
α

X × × ×

RSAA

s
ε3

(
ln p

ε

)1.5
+ 1

ε2
ln 1

α
X × × ×

s2.5

ε4

(
ln p

ε

)2
+ 1

ε2
ln 1

α
× X × ×

s1.5

ε3

(
ln p

ε

)1.5
+ 1

ε2
ln 1

α
× X X ×

s
ε2

ln p
ε

+ 1
ε2

ln 1
α

× X X X

In general: poly-logarithmic dependence in p at the compromise on
increased dependence in ε

A special case: poly-logarithmic dependence in p at no compromise on
increased dependence in ε
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Regularized SAA to exploit sparsity

Algorithms that guarantees S3ONC

S3ONC is a weaker condition than the second-order KKT

Algorithms that guarantees the second-order KKT exist in literature

• Ye (1998)5, Bian et al. (2015)6, and Haeser, Liu, Ye, Math Program (2018).

5
Ye (1998) Math Program

6
Bian et al. (2015) Math Program
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Numerical result
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Regularized SAA to exploit sparsity

Summary

RSAA: A new formulation of SAA to exploit sparsity7

Aimed for high-dimensional stochastic programming
RSAA : n ≥ poly(ln p) v.s. SAA : n ≥ poly(p)

RSAA admits FPTAS8

Critical assumption on constraints: Box constraints

7Liu et al., Forthcoming in Math Program, 2018
8Haeser, Liu and Ye, Forthcoming in Math Program, 2018
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Theoretical Extensions

Section 3

Theoretical Extensions
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Theoretical Extensions

Theoretical Extension
If initialized with a convex approximation, sharper bounds:

Õ

(
s3

ε3
(ln p)3 +

1

ε2
ln

1

α

)
for convex case, initialized with convex program

For linear constraints, {x : Cx = b, x ≥ 0}

Õ

(
(rk(C) − spark(C) + s)3

ε3
(ln p)3 +

1

ε2
ln

1

α

)
For nonconvex objective function, for any S3ONC in Γ-sublevel set:

Õ

(
(rk(C)− spark(C) + s)3

(ε− Γ)3
(ln p)3 +

1

(ε− Γ)2
ln

1

α
+

Γ

(ε− Γ)2

)
Extendable to approximately sparse problems

Õ

(
(rk(C) − spark(C) + s)3

(ε− Γ − ε̂)3
(ln p)3 +

1

(ε− Γ − ε̂)2
ln

1

α
+

Γ

(ε− Γ − ε̂)2

)
Liu et al., 2018, Under review
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Application to Designing Acoustic Tweezer

Section 4

Application to Designing Acoustic Tweezer
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Application to Designing Acoustic Tweezer

Acoustic Tweezer for Cell Separation
Differentiating one or multiple cell types from a heterogeneous group of cells
using standing acoustic waves9

bio-compatible, contact-less, and label-free
(Laser, surface adherence, etc.)

basic cell biology research

cell-based regenerative therapies

cell-level disease diagnostics

200µm v.s. 15µm

Ultrasound frq: (19.4 MHz), Channel: 75
µm high, 1000µm wide.

83% accuracy

Emerging technology for cell manipulation
9Guo et al., PNAS, 2015; Ding et al., PNAS, 2014
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Application to Designing Acoustic Tweezer

Acoustic Tweezer for Cell Separation
Differentiating one or multiple cell types from a heterogeneous group of cells
using standing acoustic waves10

Tweeze a cell by combination of

1 Acoustic radiation force
2 Gravitational force
3 Buoyancy force
4 Stokes drag force

ARF dependent on density and pressibility

Determine energy density

Choose interdigitated transducers
angles/distances

A lot of parameter tweaking is necessary

10Guo et al., PNAS, 2015; Ding et al., PNAS, 2014
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Application to Designing Acoustic Tweezer

Acoustic radiation force
Time averaged acoustic drag force depends on density and pressibility of cell11

FARF = −4

3
πN sin(2Nd)EacψR

3Nu

Acoustic contract factor:

ψ =
5ρp − 2ρf
2ρp − ρf

− βρ
βf

ρp and ρf : densities of particle and fluid, resp.

βp and βf : pressibilities of particle and fluid, resp.

N : wave number

R: radius of particle

Eac: acoustic energy density

d: distance from acoustic pressure node

u: unit vector from pressure node to pressure antinode
11Ding et al., PNAS, 2014
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Application to Designing Acoustic Tweezer

Dynamics
Dynamics:12 13

dx

dt
=vf + vr,x

dy

dt
=vr,y

Fdrag =− 6µπRv

vf =
∆P

2µ
b2

[
1− Z2

b2
+ 4

∞∑
n=1

(−1)n

β3n
· cosh(βny/b)

cosh(βna/b)
cos(βnZ/b)

]
dvr,x
dt

m =FARF,x + Fdrag,x

dvr,y
dt

m =FARF,y + Fdrag,y

12Ding et al., PNAS, 2014
13Guo et al., PNAS, 2015
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Application to Designing Acoustic Tweezer

Design of acoustic tweezer

min
Eac,l

E

 P∑
p=1

∫ T

t=0
[yp(t)− yTargetp (t)]2dt


s.t. Eac,l(t) ≥ 0, t ∈ [t0, tf ],

Other dynamics linear in Eac,l(t)

Pressibilities can be uncertain, initial condition can be uncertain.
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Application to Designing Acoustic Tweezer

Preliminary results
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More than 200× 20 = 4000
decision variables

Uryasev, Guo and Liu, Ongoing project, 2018
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Application to Designing Acoustic Tweezer

Conclusions

RSAA: A new formulation of SAA to exploit sparsity

Application to acoustic tweezer design (ATD)

More general constraints to be considered in future: Currently, RSAA
assumes box/linear constraints

More experiments for ATD: Currently, preliminary simulation results

Hongcheng Liu (University of Florida) RSAA for High-Dimensional SP and Applications 29 / 29


	Problem Statement
	Regularized SAA to exploit sparsity
	Theoretical Extensions
	Application to Designing Acoustic Tweezer

