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Objectives

* Apply the new Buffered Probability of Exceedance (bPOE)
concept to structural reliability optimization problems.

 Optimize parameters of mechanical devices for excitation
and the formation of wave motion taking into account the

uncertainties in parameters (such as variability in material
properties).

 Demonstrate how to apply the bPOE concept to optimization
problems governed by partial differential equations with
random and uncertain inputs.



Excitation of Beam Oscillation

Investigate vibrations of hinged beam with structural
inhomogeneities (such as a crack). This is the simplest model of a
mechanical device for excitation and formation of wave motion.

Determine an optimal number of forces and their characteristics
(application points, amplitude and phase of oscillation), which
provide the best approximation of a given shape and point-wise
phase vibrations of the beam in a given frequency range with a
given accuracy.

The mean square deviation is used to measure approximation
accuracy.



Informal Problem Description

* Investigate vibrations of hinged beam with structural
inhomogeneities (such as a crack). This is the simplest model of a
mechanical device for excitation and formation of wave motion.

* Determine an optimal number of forces and their characteristics
(application points, amplitude and phase of oscillation), which
provide the best approximation of a given shape and point-wise
phase vibrations of the beam in a given frequency range with a
given accuracy.

 Mean square deviation is used to measure approximation accuracy.



Informal Problem Description (Cont’d)

* Itis supposed that the system works inappropriately
(i.e., “fails”) if phase or amplitude deviate from the target
more than some specified threshold.

* For minimization of probability of such deviation we use the
new bPOE concept.



Hierarchy of Models

* Model without Defects
Assumption: beam has no structural inhomogeneities
(defects).

* Deterministic Model with Defects. Defects are characterized by
a change in Young's modulus, their lengths and locations in the
beam. Assumption: there is a complete information about
parameters of defects.

* Stochastic Model with Defects. Assumption: only partial
information about parameters of defects (lower and upper
bounds of parameters) is available.



Model for Optimal Control Policy for Generating
Vibration of Homogeneous Beam

e The problem of exciting a hinged elastic homogeneous beam by 1
forces with complex amplitudes F.i=1....I.at a frequency o 1s
reduced to the following boundary value problem:

x| ax? ar’
w(0,8) =w(L,£)=0 (1)
&> w(0,1) B &*w(L.f) =0

ox’ ox’

2 2 i B _
c [EDE? 1v]+p6 W :ZFEBW§(I—§E)> XE(D,L)
=1

where E. D, p are Young's modulus, the moment of inertia of the
cross section and density of the beam, respectively.

e We assume that w(x.7) = w(x)e™, where w(x) is complex amplitude of
deflection.



Model for Optimal Control Policy for Generating
Vibration of Homogeneous Beam (Cont’d)

We seek a solution of equation (2) in the following form:
w(x) =ZF;G("C:' gj]:‘ (3)

where G(x. &) 1s Green's function for (2):

G -1'%'G =6(x- &), xe(0,1)

G(0.6)=6G(L&)=0. xe(O.) n
{G( ¢)=6:(1.¢)=0 @



Statement of the Control Problem

Let the desired waveform 1s
W(x)=A(x)e®". (5]

Discrepancy R(x)=w(x)—W(x)= 4", where w(x) 1s a solution of (2)
for a given parameters I, F, &.i=1....].

Let /(. be a positive definite convex functional in L . It is used as an
optimality criterion in the following system control problems.

I(R)has the form

I(R)= _i|w|J dx —2Re i w Wb + “W|l dx . (7)



Statement of the Control Problem (Cont’d)

e Problem 1. For given 7/ and W(x) determine parameters
EF.&,i=1,...,/minimizing /(R) .

e Problem 2. Determine the mmimum value of/ and the
corresponding values of F. &,i=1,...,I, for which I(R)<¢&*, where ¢
1s the specified accuracy.

e Let w=re* be a solution of (2). Then

—

I(R)=[RRdx :_1[{(1‘ — 4)" +4rdsin’ [%TD]}dx

(=]
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Necessary Conditions for the
Minimum of the Functional

Let us mftroduce the following notations:

G =G(x.&). K,=[GGdr. K={K,} . b =[GWd,

v ®
br :{bf }j-l’ FT :{EF }_,r'-l-
Then,
8I(R) .
— :E(KF—b), )]
where
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Necessary Conditions for the Minimum
of the Functional (Cont’d)

If the following equation fulfills

o1(R) _
S (10)

then the values of #minimizing 7(R)are determined by
F=K". (11)
With notations (8), formula (7) can be presented in the following form:
I(R) = F'KF —2Re(Fb7) + [ ax. (12)

Statement 3. K 1s a real, symmetric and positive definite matrix.
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Necessary Conditions for the Minimum
of the Functional (Cont’d)

Statement 4. When (10) is satisfied, expression (12) takes the form:

I(R)=-b"K"b + (|| dx.

Statement 5. For(R) the following equality takes place:

eI (R) oK oK ob.

: =4 . :
=J J J

2 J

Statement 6. If (10) takes place, then
&I (R) _ O g i Ob o K

os, ¢, o¢, o¢,

Kb .

(13)

o i 2 2 ! abJ
= -2y ag? (H[—I{,- +v[_vj)+ 639'; (I{,- +VJ)_2[”JR{55 J+VJIH{6§ D S

(15)
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Green’s Function

The solution of (4) is

oled) <k,

G A = : »
g {g(;,x),wg,

where

sin kzx sin kx(1— &) sh kx —sh kxxsh kz(1- &) sin kx
2k’ sinkm sh kn '

g(x.8) =

(16)

(17)
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Optimal Control Model for Generation
of Vibration of Beam with Defect (Cont’d)

e We assume that:

(1) the beam 1s excited by a single force of intensity r, applied at
point x>¢&; (2) the defect of length ¢ located at point x=y=¢& 1s
characterized by a change in Young's modulus ar.

e The control of oscillations is described by the following equation:

d? d*w
E(}-:(x)f dﬁ)—aﬁpﬂ—Fﬁ(I—é}, (18)
where
E(x)= E,(1- AEf(x)), (19)

f@=Hx-(r-1)-Hx-(z+1£). (20)
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Optimal Control Model for Generation
of Vibration of Beam with Defect (Cont’d)

e After some transformations and the mtroduction of dimensionless
quantities, we obtain:

(9 474 - . gas
(1- B (5) - w(.) = FO(x-8) + 2880 () 50 (e

L (x = I) 2k
& Qk+D)!

+AAEW? (x, &)

wherex, y, &, F are dimensionless quantities.

e We want to find a solution in the form w =w, + 1, where w= 5(%) n
the sense of 7, AE~ 0.
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Optimal Control Model for Generation
of Vibration of Beam with Defect (Cont’d)

e We obtain:

W (x,8)—z'k'w,(x,&)=F&(x-¢&),

o b g
0 (5.8) = (1.8) = AE {1 (w4 9) +2om,+ ) Lo 1 24)

ey 6{1141) o .
+4(wﬂ+1¢-’)”Z e Z)e'+ ]
5 (2k+D)!

e We want to find+ 1 the form:

W=EW +EW, +---, (25)

whereg, = (:)(5,.) in the sense ¢, AE~ 0.
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Optimal Control Model for Generation
of Vibration of Beam with Defect (Cont’d)

e It makes sense to consider G(x,&)=G,(x,&)+&G,(x.&)+--+£G.(x.&)
as an asymptotic approximation. Further we assume that

G(xag):GD(xvg)—i_glGl (xngvx), (3].)
whereG, 1s defined in (16)-(17), ¢ =2/AE, and G, is defined as:

G, -n'k'G, =G, (1.6)8"(x— 1)

G,(0,£,%)=G,(L£,%) =0 : (32)
G®(0,£,x)=G(LE,x) =0

e Hence, we have:

azGﬂ‘(Z?f) azGﬂ'(xi‘Z)
= o (33)

G(x,5) =
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Investigation of the Functional
for the 1st Approximation

Let G(x,&, 7)=G,(x.8) + G (x,&, 7)., where G 1s defined in (16)-(17),
G 1s defined in (33), where

K, =[G(5.8)G(x.8 ) + &[G, (. £)G (3.8, 1) + G(%.£)G (. &) +

1

+£1lf (Gl(x, dfi)Gl(I, ;j))dx e K;' 1 'ElK;fl £ EIJK;.

(34)

e The matrix K:{K }J i where K are computed by formula (34), 1s a

generalization of the matrix K defined in (8), for the case of beam
with defects.

e Statement 7.Kis a real, symmetric and positive definite matrix.
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Derived Formulas

To get the elements of the K :{Kg }J ands we use formulas:

=1

K = [G,(x.£)G,(x.& )dx,
=16, (0.8) w(x) dx.

GG Ar.c ) J'G( ;)GG(rg) DEL . E
ox’ o0& ox’

)6, (x.2) 720D

K =

G (7,.E) B*G(7.8) [ 8G.(: :
k2= T LE) T 18) (0G4
d ox* ox* 0 de

alGﬂ(I: ‘,:".:J) l[aJGg(x:Z) 3

b, = = £ o ] w(x)dx.

Gradients are calculated directly from (36).

oG (r 3_’)

(36)
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Multiple Defects

e Consider the case when there are multiple defects in the beam.

e The k-th defect is at y, and is characterized by ¢, =2/ AE,.

e Formulas (10), (11), (12) do not change because of the linearity of
the problem, where
K= iKm’ b =2by
K, =K, +¢ K, +2, K., (37)

b —b‘"’ +e b

€3] WEY (kYT
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Risk Measures (CDF, VaR, POE)

Cumulative distributions function (CDF) of a random variable x:
Fy(x) = P{X < x}, x € (—00,00).
Quantile function q,(x) (in financial applications, it is called Value-
at-Risk (VaR)):
Fyl(a) = q,(X) = inf{x: @ < Fy(x)} fora € (0,1).
Probability of Exceedance (POE):
P.(X) = P(X > x) = 1 — Fy(x), x € (—0,®).

Both POE and VaR are "optimistic" risk functions which are based
on the lower bound of outcomes 1in the tail.

Both characteristics do not provide information about large losses,
which may occur with low probability.

POE and VaR are difficult to optimize for discrete distributions,
because they are non-convex, non-smooth, and have multiple local
extrema.
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Risk Measures (CVaR)

e (CVaR (superquantile) for a distribution, which does not jump at the

VAR, ¢.(x), equals the expected loss exceeding quantile
G, (X) = E[X: X = q,(X)).

In general case, when £, has a jump at VaR, q_(x), the definition of
CVaR 1s more complicated:

E[X - u]+)

g.(X)=min|u+ ;
q,:() u( I=—

where[-]* = max{-,0}.

CVaR has a much better mathematical properties compared to VaR.
It 1s convex in random variables. Moreover, it can be optimized with
linear and convex programming algorithms.
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Risk Measures (bPOE)

Buffered Probability of Exceedance (bPOE):
p.(X) = 1-g;1(X) for EX < x < supX.
CVaR) and bPOE are conservative counterparts of VaR and POE.

bPOE 1s an upper bound for POE. It provides more information
about the magnitude of outcomes in the tail of the distribution,
compared to POE.

bPOE can be calculated with the following formula:
2. (X) = m}it@t Ela(X —x) +1]7.
This one-dimensional optimization problem is convex, and in the

case of finite probability space 1t can be reduced to LP.

Minimizing of bPOE is intended to reduce the probability of an
undesirable tail events. Compared to bPOE minimization, the CVaR
minimization fixes the probability of the tail and minimizes the
average of the tail outcomes
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Optimization Problem Statement

Let the beam contains an undefined number of defects ~,. with

undefined characteristics ¢, , d&

. » In unknown locations .

The beam 1s excited by 1 forces F, =u,+iv, applied at the points
G T

For the given form of vibration w(x)=Rew(x)+ilmw(x), we want to
determine an optimal allocation of forces and their characteristics.

It is assumed the following prior information for the random defects:
the minimum and maximum number of defects, the boundaries of
their possible location, the boundaries of linear dimensions, and
changes in Young's modulus of defects.
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Optimization Problem Statement (Cont’d)

Assuming that the beam defects are described by the random vector
5 } we define the risk functional J that includes the mean

07 =N of 1 dE,,
square deviation of the deflection of the beam (and the deflection phase) from the

given oscillation form:
A _f= =
+ZDF.Z), (63)

1 U‘u{*,ﬁ,é’,x_W(x)]zdx} .12

0
where p is the measure of risk, D(.-) is the regularizing functional defined on the
control space, and A is the penalty coefficient. Denote the mean square deviation:

(64)

L(é,}},g:)z hw(@,ﬁ,é,x)—W(x)fdﬁ:.
0

We use DPOE measure of risk p. The control problem is an unconditional
minimization of the functional J on a given domain of control space (7,Z)<U:
(65)

min/(F.£).
26
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Optimization Problem Statement (Cont’d)

¢ To solve problem (65). we fixed the controls (7.Z) and generated -~

random realizations of defects 4.....6, . using an a priori predetermined

Sample
distribution law of @.

e For fixed controls LF“E] for each generated random realization of defects,
8,.i=1,....Ng,. .. we solved corresponding boundary value problem (28), using

the results presented in previous slides.

_

e We obtamed n,, realizations, Iq( L BN

variable L(3,F.Z).

s E] of random

Ty
Ty
""'\3—--"
[

B
I
-
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Optimization Problem Statement (Cont’d)

e [et us consider L[‘,F,E ] as a discrete random variable with values

_

11(551,13,51.,.,1__\,5“ [H,\_. F, 5] and equal probabilities.

e\ Nsmpe
e Then
0, if zémalej(_?,f},g)
bPOE._ (L(_é’,ﬁ,&")]: 1-a,if m-‘emge(ﬂ(g,f},f]){ z<max L, (gj, :5] : (66)
I. #z= avemge(L(:f}:g ]

wherezis a threshold; « 1s a confidence level such that
cvar, (L@, F.E))-z.

e Optimization problem

Minimizing risk
y

miﬂnB bPOE, (L(8.F.))+ jﬂ(f - ﬂ : (67)
Rk
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Results of Simulations:
Deterministic Case without Defects

—k=1.8
—k=2.2
- k=2.4

i a " i ¥
w =~ w w -

k=2.6
—_—k=2.8
——k=3.2
—k=3.4
—k=3.6
—k=3.8

Approximation Error (in Logarithmic Scale)
. =
B

e =] 2

e =44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ——k=4.6
Number of Forces

Figure 1. Dependence of Approximation Error (Objective Function) on a
Number of Applied Forces and Wave Number.

e For any frequency (wave number, k) the increase in the number of
applied forces, results in the reduction of the approximation error.

e For any fixed number of applied forces, the approximation error
mcreases with the increase of the wave number, £.



Results of Simulations

Deterministic Case without Defects
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Figure 2. Optimal characteristics of applied forces (application places, real,
if, and imaginary, if, parts of their amplitudes). for wave number £ =1.8 in
cases: 2 forces (a). 3 forces (b), 4 forces (c)., 5 forces (d), 6 forces (e). 7
forces (f).
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Results of Simulations
Deterministic Case without Defects
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Figure 3. Optimal characteristics of applied forces (application places, real,
rf, and imaginary, if, parts of their amplitudes), for wave number k¥ =4.6 in
cases: 5 forces (a), 6 forces (b), 7 forces (c), 8 forces (d), 9 forces (), 10
forces (f).
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Results of Simulations
Deterministic Case with one Defect

Any defect is characterized by:

1. 1its position in the beam xx:

2. geometric size AL € (0,0.1);

3. relative change in Young's modulus AE.

The defect may be located anywhere in the beam: xx € (0,1).

The relative change in the Young's modulus of AE can vary within interval (-0.5. 0.5).
Negative AE value corresponds to the consolidation: positive, to weakening: AE = 0 means
that there are no defects.

We use parameter Delta = AE X ALin the model as a defect characteristic.
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Results of Simulations
Deterministic Case with one Defect

First, we suppose that there is full information about these defect parameters.

We investigated how value of defect (Delta). and defect location, xx. influence the solution

of the problem of optimal control of elastic beam oscillation and corresponding
approximation error (approximation accuracy).

We fixed the wave number =1.8. number of forces = 4, and randomly generated single

defects with different pair of parameters (xx, Delta) 90000 times.

For each fixed value of (xx, Delta) we solved the problem of optimal control of elastic
beam oscillation, and determined the optimal characteristics of forces, and minimal value of
objective function, which is considered as approximation error (accuracy).
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Results of Simulations
Deterministic Case with one Defect

a)
6.0E-04
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wl = -
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Figure 4a. Dependence of approximation error on defect value (Delta), for
defect locations xx = 0.1, 0.2, 0.3, 0.4, 0.5. Wave number =1.8: number of

forces = 4.
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Results of Simulations
Deterministic Case with one Defect

b)
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Figure 4b. Dependence of approximation error on defect value (Delta). for
defect locations xx = 0.6, 0.7, 0.8, 0.9. Wave number =1.8; number of
forces = 4.
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Results of Simulations
Deterministic Case with one Defect

a) b)
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Figure 5. Dependence of real parts of forces on defect size (Delta) for fixed
defect location (xx = 0.4). Wave number =1.8; number of forces = 4; ranges of
defect sizes are: (a) Delta € (-0.05,0.05), (b) Delta £ (-0.001,0.001).
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Results of Simulations
Deterministic Case with one Defect

a) b)
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Figure 6. Dependence of imaginary parts of forceson defect size (Delta) for
fixed defect location (xx = 0.4). Wave number =1.8; number of forces = 4;

ranges of defect sizes are: (a) Delta € (-0.05,0.05), (b) Delta = (-0.001.0.001).



Results of Simulations
Deterministic Case with Multiple Defects

We fixed optimal solution of deterministic problem without defects with wave number k£ =1.8
and number of forces = 4.

Then we generated three series of scenarios. Each series contains one thousand scenarios.
Each scenario from the first series contains one generated defect; scenario from the second
series contains no more than five generated defects; scenario from the third series contains no
more than ten generated defects.

For each scenario we recalculated approximation error, obtained by solving optimization
problem without defects.

As a result, we obtained three series of approximation errors.

Then we built cumulative distribution functions using these serios of scenarios.
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Results of Simulations
Deterministic Case with Multiple Defects
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Figure 7. Probability Distribution Functions for Approximation Errors, and
Values of Probability of Exceedance (POE) Corresponding to Multiple
Defects.
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Results of Simulations
Stochastic Case with Multiple Defects (Approach)

¢ Numerical simulations were conducted for given form of vibration
W (x)=ReW (x)+ilm W (x), different numbers of forces /, and wave numbers /=1.8 and

=4.6.

e For fixed [ and & we solved deterministic problem of optimal control of beam oscillation
without defects and obtained optimal characteristics of forces (real and imaginary parts of

their amplitudes F, =u, +iv, . application places &,, j=1,....1).
e For fixed optimal deterministic solution (ﬁ', 5) P Y . £ st} W
performed A=10 times the following procedure:
1. Generate N, =1000 samples g7 = {1‘\7@39“)5&,@&,‘::fE}d@r ,;(d@,} of random defects.

2. Determine scenarios L, (t_?; L ), L LA.-SWE(E_S'-‘;‘.}wQ, F,& ) of random mean square
1

devia’tionL(é, ﬁ, E): I

0

solution (ﬁ 2 E ), and generated defects 6.

3. Calculate initial (original) value of bPOE, (L(§ Iy 5 )), using a threshold z and
generated scenarios.

- e 2
w(ﬂ, F,&,x) —W(x)] dx ,using fixed optimal deterministic

4. Solveoptimization problem, using regularizing functional D(}_?: i E ) :
min bPOE, ((6.F.&))+ D(F.€).



Results of Simulations
Generation of Random Defects

Random defects were generated, using the following prior information:

1. Number of defects in one sample 1=N,, <5;

2. Vector of defects sizes £, =(AL,...., ALy Y. 0<AE, 201, m=L..N
N

4. Vector of defects positions z, =(xx,.....xx Nﬂr)r v Bl=oer <09

mzl,...,ngr.
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Results of Simulations
Stochastic Case #1

Parameters: Number of Samples =1000; Wave Number = 1.8;

Number of Forces = 5; Threshold=0.011; Number of Runs M = 10,
Number of Defects < 5.

Results of Modeling:

Deterministic optimal mean square deviation = 4.96E-06

I T

1 2 3 4 5 6 7 8 9 10

bPOE before

. 7.96E-2 8.33E-2 8.51E-2 8.25E-2 9.10E-2 9.80E-2 7.54E-2 1.11E-1 7.89E-2 7.06E-2
Optimization
bPOE after

. 6.49E-2 6.89E-2 6.15E-2 7.28E-2 8.46E-2 9.49E-2 6.83E-2 9.85E-2 6.58E-2 6.71E-2
Optimization
Percentage

18.4% 17.3% 27.8% 11.8% 7.1%  32% 9.4% 115% 16.6%  5.0%
Decrease of bPOE ° ° ° ° ° ° ° ° ° °
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Results of Simulations
Stochastic Case #1

For fixed number of forces we determined minimum, maximum, and
average values of Percentage Decrease of bPOE over 10 runs.

The following chart demonstrates dependence of these characteristics on
number of forces for Wave Number = 1.8, and Threshold=0.011.

30.00%

25.00% 2N

20.00% \

(74 ]
o)
=9
L
k=
¥
o
2
g 15.00% — E g o
8 10.00% g / [~ —average
a—
o / \ max
5 5.00% . /

0.00%

2 3 4 5 6

Number of Forces
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Results of Simulations
Stochastic Case #1, Run #3, Tails of CDF

Let h be a value such that Treshold :E[L(é,ﬁ,f)lL(é,ﬁ, §)>h].

The following chart compares tails of CDF of the random value L(Q, T E)
before optimization (original) with that after optimization (optimized).

Wave Number = 1.8; Number of Forces = 5; Threshold= 0.011; Run#3.

1

098 1 . /
096 ra

0.94
092 {)”f original
0.9 i = optimized
0.88 . ! ! T
Ezj // =—Threshold
0.82 //
os M

5.0E-3 8.0E-3 1.1E-2 1.4E-2 1.7E-2 2.0E-2

By minimizing bPOEMS;M(L(B, ﬁf)) we maximize Pr(L(é,ﬁ, E) < h).
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Results of Simulations
Stochastic Case #1, Run #3, Tails of POE

Let i be a value such that Treshold :E[L(é,ﬁ,g?)u(é, ﬁ,§)>h].

The following chart compares tails of POE of the random value L(é, F, E)
before optimization (original) with that after optimization (optimized).

Wave Number = 1.8; Number of Forces = 5; Threshold= 0.011; Run#3.
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By minimizing bPOEMst(L(e,ﬁ, g )) we minimize Pr(L(E,ﬁ,E

e

>h).
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The following chart compares tails of bPOE of the random value L(é,ﬁ,
before optimization (original) with that after optimization (optimized).

Wave Number = 1.8; Number of Forces = 5; Threshold= 0.011; Run#3.

Results of Simulations
Stochastic Case #1, Run #3, Tails of bPOE
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Results of Simulations
Stochastic Case #2

Parameters: Number of Samples =1000; Wave Number = 4.6;

Number of Forces = 8; Threshold= 0.0046; Number of Runs M = 10,
Number of Defects < 5.

Results of Modeling:

Deterministic optimal mean square deviation = 5.61E-05

e o

1 2 3 4 5 6 7 8 9 10

bPOE before

.. . 6.62E-03 1.64E-02 1.74E-02 1.40E-02 1.64E-02 1.28E-02 1.15E-02 1.78E-02 7.64E-03 6.04E-03
Optimization
bPOE after

.. . 3.82E-03 1.04E-02 1.31E-02 1.12E-02 1.42E-02 1.12E-02 1.07E-02 1.75E-02 7.55E-03 4.36E-03
Optimization
Percentage

42.31% 36.52% 24.78% 19.81% 13.33% 13.01% 6.77% 1.46% 1.20% 27.82%
Decrease of bPOE ° ° 0 ° ° ° 0 ° ° °
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Results of Simulations
Stochastic Case #2

For fixed number of forces we determined minimum, maximum, and
average values of Percentage Decrease of DPOE over 10 runs.

The following chart demonstrates dependence of these characteristics on
number of forces for Wave Number = 4.6, and Threshold= 0.0046.
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Results of Simulations
Stochastic Case #2, Run #5, Tails of CDF

Let h be a value such that Treshold :E[L(é,ﬁ,f)ﬂ(ﬁ F, g?)>h].

The following chart compares tails of CDF of the random value L(@,ﬁ, g?)
before optimization (original) with that after optimization (optimized).

Wave Number = 4.6; Number of Forces = 8; Threshold= 0.0046; Run#5.
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By minimizing bPOEmgm,d(L(H, F, ;?)) we maximize Pr(L(é,ﬁ, ;_5) = h)_

49



Results of Simulations
Stochastic Case #2 , Run #5, Tails of POE

Let k& be a value such that Treshold :E[L(é,ﬁ,g)u(é, F, §)>h].

The following chart compares tails of POE of the random value L(é, F, g?)
before optimization (original) with that after optimization (optimized).

Wave Number = 4.6; Number of Forces = 8; Threshold= 0.0046; Run#5.
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Results of Simulations
Stochastic Case #2, Run #5, Tails of bPOE

The following chart compares tails of bPOE of the random value L(ﬂ,ﬁ,f]
before optimization (original) with that after optimization (optimized).

Wave Number = 4.6; Number of Forces = 8; Threshold= 0.0046; Run#5.
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THANK YOU FOR YOUR ATTENTION!
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