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Problem Formulation:
Mean-Semideviation Risk Measures



Base Problem

• We consider risk-averse optimization problems of the form

inf
x∈X

E {F (x,W)}︸ ︷︷ ︸
risk-neutral

+ c
[
E
{
[R (F (x,W)− E {F (x,W)})]p

}]1/p︸ ︷︷ ︸
risk-averse

, (1)

for fixed risk penalty multiplier c ≥ 0, order p ∈ [1,∞), and where

• F : RN × RM → R is convex in its first argument.

• F̃ (x, ·) ≡ F (x,W (·)) ∈ Lp (Ω,F ,P;R) , Zp .

• R : R → R acts on the central deviation F (·,W) − E {F (·,W)}, satisfying:

• S1R is convex.

• S2R is nonnegative.

• S3R is nondecreasing.

• S4 For every α ≥ 0, it is true thatR (x + α) ≤ R (x) + α, for all x ∈ R. (nonexpansive)
Any function satisfying conditions S1− S4 is suggestively called a risk regularizer.

• The feasible set X ⊆ RN is closed and convex.
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Mean-Semideviations

• The objective of (1) evaluates the risk-measure

ρ (Z) , E {Z}+ c
(
E
{
(R (Z − E {Z}))p

})1/p
, Z ∈ Zp, (2)

at Z ≡ F (x,W) ∈ Zp , for x ∈ RN .

• ρ strictly generalizes the p-th order mean-upper-semideviation.

• Recovered by choosingR (·) ≡ (·)+ , max {·, 0} in (2), satisfying conditions S1− S4.

• Problem (1) may be written compactly as

inf
x∈X

{
ρ (F (x,W)) , φ

F̃
(x)

}
.
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Examples of Mean-Semideviations - 1

• Mean-Upper-Semideviations (withR (·) ≡ (·)+):

ρ (Z) ≡ E {Z}+ c
(
E
{(

(Z − E {Z})+
)p})1/p

≡ E {Z}+ c
∥∥(Z − E {Z})+

∥∥
Lp

, Z ∈ Zp.

• Entropic Mean-Semideviations (withR (·) ≡ t−1
log (1+ exp (t (·)))):

ρ (Z) ≡ E {Z}+
c
t
‖log (1+ exp (t (Z − E {Z})))‖Lp

, Z ∈ Zp.

• Gaussian Antiderivative (GA) Mean-Semideviations (withR (·) ≡ (·)Φ (·) + ϕ (·)):

ρ (Z) ≡ E {Z}+ c ‖(Z − E {Z})Φ (Z − E {Z}) + ϕ (Z − E {Z})‖Lp
, Z ∈ Zp,

where Φ and ϕ are the (standard) Gaussian cdf and pdf, respectively.
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Examples of Mean-Semideviations - 2

• Any convex (S1), nonnegative (S2), increasing (S3), and nonexpansive (S4) piecewise
linear function (with kinks).
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Examples of Mean-Semideviations - 3

• Countless other examples!
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Motivation for Optimization of Mean-Semideviations

• Relevant whenever variable risk assessment relative to the values of the respective
central deviation is desirable.

• Typical examples:
• Part yield maximization in manufacturing facilities.

• Production planning and related newsvendor-type problems.

• Related areas:
• Supply chain optimization.

• Resource allocation (more broadly).

• Risk-aware Learning:
• machine learning, reinforcement and sequential learning, AI.

• Central research directions:
• Design of algorithms with desirable characteristics:

• Efficient

• Data-driven

• Exact

• Fast

• Convergence analysis under reasonable assumptions, covering a wide range of problems.
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Main Contributions

• MESSAGEp Algorithm1 :

• An efficient, data-driven Stochastic Subgradient Descent (SSD)-type procedure for iteratively
solving convex mean-semideviation problems to optimality.

• A variation of the T-Level Stochastic Compositional Gradient Descent (T-SCGD) algorithm of
[Yang, Wang & Fang, 2018]2 , analyzed under a generic framework.

• Complete convergence analysis, under a new and flexible structural framework:

• We establish pathwise convergence, in the same strong sense of [Yang et al., 2018].
• We derive explicit convergence rates of the orders of

• O
(
n−2/3

)
, when p ≡ 1 (matching the state of the art).

• O
(
n−1/2

)
, when p > 1 (completely new result).

• Our problem assumptions reveal a trade-off between the expansiveness of the random cost
and the smoothness of the risk regularizer.

• Our problem assumptions strictly generalize those of [Yang et al., 2018].

1MESSAGEp = MEan-Semideviation Stochastic compositionAl subGradient dEscent of order p
2Yang, Shuoguang, Wang, Mengdi, and Fang, Ethan X., "Multi-Level Stochastic Gradient Methods for Nested
Composition Optimization", Arxiv (2018).
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The MESSAGEp Algorithm



Basic Properties of the Base Problem

Proposition (When are mean-semideviations convex-monotone?)
Fix p ∈ [1,∞) and choose any risk regularizer R : R → R. Then, as long as c ∈ [0, 1],
the risk measure ρ is convex (convex, monotone and translation equivariant).

Corollary (When is (1) Convex?)
Fix p ∈ [1,∞) and choose any risk regularizer R : R → R. Then, as long as c ∈ [0, 1],
the composite function φ

F̃
(·) ≡ ρ (F (·,W)) is convex on RN , and (1) constitutes a

convex stochastic program.
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Mean-Semideviations in Compositional Form

• Define expectation functions

% (x) , x1/p, x > 0 (when p > 1) ,

gF̃ (x, y) , E
{
(R (F (x,W)− y))p

}
and

hF̃ (x) , [x E {F (x,W)}] ,

for every admissible choice of F and PW (the pushforward (distribution) of W).

• Objective may be expressed as

φ
F̃
(x) ≡ E {F (x,W)}+ c%

(
gF̃

(
hF̃ (x)

))
, ∀x ∈ X .

• Equivalent formulation of the base problem:

inf
x∈X

φ
F̃
(x) , E {F (x,W)}+ c%

(
gF̃

(
hF̃ (x)

))
.
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Differentiability of φF̃ (·) ≡ ρ (F (·,W))

Lemma (Differentiability of φF̃ )
Under some very mild technical assumptions:

∇φ
F̃
(x) ≡ E {∇F (x,W)}+ c∇hF̃ (x)∇gF̃

(
hF̃ (x)

)
∇%

(
gF̃

(
hF̃ (x)

))
, ∀x ∈ X ,

where

∇% (x) ≡


1, if p ≡ 1
x(1−p)/p

p
, if p ∈ (1,∞)

, ∇hF̃ (x) ≡ E


 IN ∇F (x,W)


 and

∇gF̃ (x, y) ≡ E

p (R (F (x,W)− y))p−1∇R (F (x,W)− y)

 ∇F (x,W)

− 1


 ,

respectively, for every (x, y) ∈ GraphX (E {F (·,W)}).
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Take a closer look at ∇φF̃

∇φ
F̃ (x) ≡ E {∇F (x,W)}+ c∇hF̃ (x)∇gF̃

(
hF̃ (x)

)
∇%

(
gF̃

(
hF̃ (x)

))

hF̃ (x) ≡ [x E {F (x,W)}]

gF̃
(
hF̃ (x)

)
≡ E

{
(R (F (x,W)− E {F (x,W)}))p

}
• If hF̃ (·) and gF̃

(
hF̃ (·)

)
where known, a stochastic gradient could be formed.

• But both hF̃ (·) and gF̃
(
hF̃ (·)

)
are expectation functions themselves!

• Not possible to generate a a stochastic gradient in a single sampling step.

• For fixed x, E {F (x,W)} can be recursively estimated using stochastic approximation.

• Same for E
{
(R (F (x,W)− y))p

}
, for also fixed y.

• ⇒ Simplest Idea: TRACK hF̃ (·) and gF̃
(
hF̃ (·)

)
using biased stochastic approximation!
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The MESSAGEp Algorithm

Input: Initial points x0 ∈ X , y0 ∈ R, z0 ∈ R, stepsize sequences {αn}n∈N , {βn}n∈N , {γn}n∈N , IID
sequences

{
Wn
1
}
n∈N ,

{
Wn
2
}
n∈N and penalty coefficient c ∈ [0, 1].

Output: Sequence
{
xn
}
n∈N .

1: for n = 0, 1, 2, . . . do
2: Obtain F

(
xn,Wn+1

1

)
and∇F

(
xn,Wn+1

1

)
from the SO.

3: Update (First SA Level):

yn+1 = (1− βn) y
n
+ βnF

(
xn,Wn+1

1

)
4: Obtain F

(
xn,Wn+1

2

)
and∇F

(
xn,Wn+1

2

)
from the SO.

5: Update (Second SA Level):

zn+1 =
{
1, if p = 1
(1− γn) z

n
+ γn

(
R
(
F
(
xn,Wn+1

2

)
−yn

))p
, if p > 1

6: Define auxiliary variables:
δ = F

(
xn,Wn+1

2

)
− yn

δ
∇

= ∇F
(
xn,Wn+1

2

)
− ∇F

(
xn,Wn+1

1

)
∆ = δ

∇∇R (δ) (R (δ))
p−1 (zn)(1−p)/p

7: Update (Third SA Level):

xn+1 = ΠX

{
xn − αn

(
∇F
(
xn,Wn+1

2

)
+ c∆

)}
8: end for

13/25



Advantages of the MESSAGEp Algorithm

• Effective: If convergent, solves underlying problem to optimality.

• Compare with Sample Average Approximation (SAA).

• Efficient:
• Can exploit new information available to the decision maker.
• Suitable when information is available sequentially, and
decisions are made adaptively over time.

• Minimal and fixed time and space complexity per iteration.
• Suitable for problems with massive amounts of available data.

Good, but:
Does it converge?

Under what assumptions?
How fast?
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Analysis of
the MESSAGEp Algorithm



Proposed Structural Framework

• For some measurable set ΩE ⊆ Ω, such that P (ΩE) ≡ 1, let us define

ml , inf
x∈X

inf
ω∈ΩE

F (x,W (ω)) and mh , sup
x∈X

sup
ω∈ΩE

F (x,W (ω)) .

For P ∈ [2,∞] and Q ∈ [P/(P−1),∞], F andR satisfy the conditions:
C1 For chosen random subgradient∇F (·,W), there exists a number G < ∞, such that

sup
x∈X

[
E
{
‖∇F (x,W)‖P2

}]1/P
, sup

x∈X

∥∥∥‖∇F (x,W)‖2
∥∥∥
LP

≤ G.

C2 There exists a number V < ∞, such that

sup
x∈X

V {F (x,W)} , sup
x∈X

[
E
{
(F (x,W))

2
}

− (E {F (x,W)})2
]
≤ V.

C3 For chosen subderivative∇R, there exists another number D < ∞, such that

sup
x∈X

∥∥∥∣∣∣∇ (R (z))p
∣∣
z≡F(x,W)−y1

− ∇ (R (z))p
∣∣
z≡F(x,W)−y2

∣∣∣∥∥∥
LQ

≤ D |y1 − y2| ,

for all (y1, y2) ∈ [cl {(ml,mh)}]
2 .

C4 Whenever p > 1, it is true that −∞ < ml ≤ mh < ∞, and

0 < ε , R (ml − mh) ≤ R (mh − ml) , E < ∞.

In other words,R is positively uniformly bounded withinR
F̃ , cl {(ml − mh,mh − ml)}.
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Pathwise Convergence of the MESSAGEp Algorithm

Theorem

Let βn ∈ (0, 1], γn ∈ (0, 1], for all n ∈ N. Whenever p ≡ 1, suppose that

∑
n∈N

αn ≡ ∞ and
∑
n∈N

α
2
n + β

2
n +

α
2
n

βn
< ∞,

whereas, whenever p > 1, choose y0 ∈ [ml,mh], z
0 ∈

[
ε
p
, Ep

]
, and suppose

additionally that

∑
n∈N

γ
2
n +

α
2
n

γn
+

β
2
n

γn
< ∞.

Then, as long as X ∗ ≡ arg minx∈Xφ
F̃
(x) 6= ∅, the process

{
xn

}
n∈N generated by the

MESSAGEp algorithm satisfies

P
({

ω ∈ Ω
∣∣∣∃ x∗ (ω) ∈ X ∗ such that xn (ω) −→

n→∞
x∗ (ω)

})
≡ 1.

In other words, almost everywhere relative to P , the process
{
xn

}
n∈N converges to a

random point in the set of optimal solutions of (1).
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Comments

• And what about actual stepsize selection?
• Convergence is guaranteed for subharmonic stepsizes (case p > 1)

αn ≡
1
nτ1

, βn ≡
1
nτ2

and γn ≡
1
nτ3

, n ∈ N+
,

as long as

7
8

<τ1 ≤ 1,

3
4

<τ2 < 2τ1 − 1 and

1
2
<τ3 < 2τ2 − 1.

1
0.98

0.960.5
1

0.6

0.94

0.7

0.95

0.8

0.920.9

0.9

0.9

1

0.85
0.8 0.880.75
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Rates: Convex Case

• It is possible to show that by forming estimates

x̂n ,
1

dn/2e

n∑
i=n−dn/2e

xi, ∀n ∈ N+
,

the MESSAGEp algorithm satisfies

E
{
φ
F̃ (x̂n)− φ

F̃
∗

}
≡


O

(
n−1/4

)
, if p ≡ 1

O
(
n−1/8

)
if p > 1

,

with stepsizes chosen as

αn≡
1

n3/4
and βn≡

1
n1/2

, when p ≡ 1

αn ≡
1

n7/8
, βn≡

1
n3/4

and γn≡
1

n1/2
, when p > 1

• Convergence in the general case is slow, especially when p > 1.

• Can we do better?
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Rates: Strongly Convex Case - 1

• Assume that φF̃ is strongly convex in the sense that there exists σ > 0, such that

φ
F̃
(x)− φ

F̃
∗ ≥ σ

∥∥x − x∗
∥∥2
2 , ∀x ∈ X .

• But how can we guarantee such a condition?

Proposition (When is (1) Strongly Convex?)
Fix p ∈ [1,∞) and choose any risk regularizer R : R → R. Then, as long as c ∈ [0, 1],
and if, for σ > 0 and for every w ∈ RM , F (·,w) is σ-strongly convex on X (such that
F (·,w)− σ ‖·‖22 is convex on X ), the composite function φ

F̃
(·) ≡ ρ (F (·,W)) is also

σ-strongly convex on X .

• Proof is very simple and is due to the risk measure ρ being convex (convex, monotone
and translation equivariant):

φ
F̃
(·)− σ ‖·‖22 = ρ (F (·,W))− σ ‖·‖22 ≡ ρ

(
F (·,W)− σ ‖·‖22

)
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Rates: Strongly Convex Case - 2

Theorem (Rate | Strongly Convex Case | Subharmonic Stepsizes | p > 1)

Suppose that φF̃ is σ-strongly convex, and that

αn ,
1
σn

, βn ,
1
nτ2

and γn ,
1
nτ3

, ∀n ∈ N+
,

where 1/2 ≤ τ3 < τ2 < 1, and with initial values α0 ≡ β0 ≡ γ0 ≡ 1. Define

no(τ2) ≡
⌈(

1− τ
1/
(
τ2+1

)
2

)−1⌉
∈ N3 and R (τ2, τ3) ,

1
1− max {2− 2τ2, 2τ2 − 2τ3, τ3}

> 1.

Then, for every n ∈ Nno
(
τ2
)
, it is true that

E
{∥∥∥xn+1 − x∗

∥∥∥2
2

}
≤ Σ̂

no(τ2)
n

+ Σ̂
R (τ2, τ3)

n2min
{
1−τ2,τ2−τ3

} ,

for some constant 0 < Σ̂ < ∞. In particular, if, for some ε ∈ [0, 1/4) and δ ∈ (0, 2),

τ2 ≡ 3/4 + ε and τ3 ≡ 1/2 + δε,

then the MESSAGEp algorithm satisfies

O
(
n−(1−4ε)/2

)
≡ E

{∥∥∥xn+1 − x∗
∥∥∥2
2

}
≤

Σ̂

(
no (ε) +

2
1− 4ε

)
n(1−4ε)/2 ,

for every n ∈ Nno(ε) , for each fixed ε.
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Rates: Strongly Convex Case - 3

Theorem (Rate | Strongly Convex Case | Subharmonic Stepsizes | p ≡ 1)

Suppose that φF̃ is σ-strongly convex, and that

αn ,
1
σn

, and βn ,
1
nτ2

∀n ∈ N+
,

where 1/2 < τ2 < 1, and with initial values α0 ≡ β0 ≡ 1. Choose no ≡ no(τ2) as in
the previous slide, and define

R (τ2) ,
1

1−max {2− 2τ2, τ2}
> 1.

Then, for every n ∈ Nno
(
τ2
)
, it is true that

E
{∥∥∥xn+1 − x∗

∥∥∥2
2

}
≤

Σ(no (τ2) + R (τ2))

nmin
{
2−2τ2,τ2

} ,

for some constant 0 < Σ̂ < ∞. In particular, the exponent in the denominator is
maximized at τ∗2 ≡ 2/3, yielding a rate of the order of O

(
n−2/3

)
.
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Rates: Strongly Convex Case - 4

For p > 1:

• If ε ≡ 0, the rate attained is of the order of O
(
n−1/2

)
.

• 4x improvement compared to the convex case!

• However, pathwise convergence is not guaranteed.

• If ε > 0, the rate attained is arbitrarily close to the order of O
(
n−1/2

)
.

• And pathwise convergence is guaranteed.

For p ≡ 1:

• The rate attained is of the order of O
(
n−2/3

)
.

• 2.6x improvement compared to the convex case!

• And pathwise convergence is guaranteed.
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Comparison with the State of the Art

• Most of the results presented may be proven utilizing the generic problem framework
of [Yang et al., 2018].

• Question: Are we doing better in terms of the variety of problems our proposed
framework supports?

• YES!

Proposition (Structural Comparisons)
Under very mild technical assumptions: The class of mean-semideviation programs
supported under the proposed framework contains the respective class supported in
[Yang et al., 2018]. Further, the inclusion is strict.

• If fact, under the framework of [Yang et al., 2018]:

• (R (·))p must be differentiable everywhere.

• (R (·))p must be Lipschitz.

• F (·,W) must be differentiable everywhere on X . If not,R must be partially constant!

• Our framework is free of all those restrictions.
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Conclusions

• We introduced and analyzed the MESSAGEp algorithm, an efficient, data-driven
procedure for iteratively solving convex mean-semideviation problems to optimality.

• We proposed a new framework of structural assumptions, under which:

• We established pathwise convergence of the MESSAGEp algorithm, in the strong sense of
[Yang et al., 2018].

• We derived explicit convergence rates of the MESSAGEp algorithm, matching and improving
the state of the art.

• Our framework:

• provably strictly generalizes that of [Yang et al., 2018].

• reveals a well-defined structural trade-off between the random cost and the
mean-semideviation risk measure considered.

• Many directions for future research:

• Adaptive risk-averse optimization in nonstationary settings.

• Risk-averse reinforcement learning and approximate dynamic programming.

• Acceleration for problems with more favorable structure (second-order differentiability, etc.)

• Applications: Supply chain management, multi-agent network control and resource
allocation.
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The End

Thank You!
Questions?
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How “hard” condition C3 really is?

Proposition (Ensuring Validity of C3)
Assume that, whenever p > 1, condition C4 is satisfied. Then, the following are true:

1. Suppose that (R (·))p is differentiable on R
F̃ , and there is DR,p < ∞, such that

∣∣∇ (R (y1))
p −∇ (R (y1))

p∣∣ ≤ DR,p |y1 − y2| , ∀ (y1, y2) ∈
[
R
F̃
]2

.

Then, condition C3 is satisfied for every Q ∈ [P/(P−1),∞], for every P ∈ [2,∞].

2. Choose ∇R ≡ R′
+ , and if F

(·)
W : R → [0, 1] denotes the cdf of F (·,W), suppose that

there exists DF̃ < ∞, such that

sup
x∈X

∣∣FxW (y1)− FxW (y2)
∣∣ ≤ DF̃ |y1 − y2| , ∀ (y1, y2) ∈ [cl {(ml,mh)}]

2
.

Then, condition C3 is satisfied for Q ≡ 1 (implying that P ≡ ∞), for every p ∈ [1,∞).

• In fact, more is true!

But we need more notation...
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