RECURSIVE OPTIMIZATION OF
MEAN-SEMIDEVIATION RISK MEASURES WITH VARIABLE ASSESSMENT

Dionysios S. Kalogerias
Joint work with Warren B. Powell

June 2018

Department of Operations Research & Financial Engineering (ORFE)

. B PRINCETON
UNIVERSITY

This material is based upon work supported by the U.S. Navy / SPAWAR Systems Center Pacific under Contract No. N66007-18-C-4031. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the U.S. Navy / SPAWAR Systems Center Pacific

1/25



PROBLEM FORMULATION:
MEAN-SEMIDEVIATION RISK MEASURES



BASE PROBLEM

- We consider risk-averse optimization problems of the form

Jnf E{F(x, W)} +c [E{[R (F (x, W) — E{F (x, W)})]’}]"*, (1)

risk-neutral risk-averse

for fixed risk penalty multiplier ¢ > 0, order p € [1, 00), and where
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- Sk Forevery o > 0, itistruethat R (x + a) < R (X) + «, forallx € R. ( )
Any function satisfying conditions S1 — S& is suggestively called a risk regularizer.

- The feasible set X C R" is closed and convex.
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MEAN-SEMIDEVIATIONS

- The objective of (1) evaluates the risk-measure
1/p
p(Z)2E{Z} +c(E{(R(Z-E{2}))'}) ", Z€e 2z, (2)

atZzF(x,W)eZp,forxeRN.
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1/p
p(Z)2E{Z} +c(E{(R(Z-E{2}))'}) ", Z€e 2z, (2)

atZzF(x,W)eZp,forxeRN.

- Recovered by choosing R () = (-),. £ max {-,0} in (2), satisfying conditions $1 — S&.

- Problem (1) may be written compactly as

int {o(Foowy) 267 (0}

3/25



EXAMPLES OF MEAN-SEMIDEVIATIONS - 1

p(Z)=E{Z} +c (E{((Z_JE{Z})Q”})”p
EJE{Z}+c|}(z—JE{Z})+||£D, Ze Z,
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EXAMPLES OF MEAN-SEMIDEVIATIONS - 1

p(Z)=E{Z} +c (E{((Z_JE{Z})Q”})”p
EE{Z}+C||(Z—E{Z})+||LD, Ze Z,

R()= t log (14 exp (t(+)))

p(2) =E{Z} + % l[tog (1 +exp (t(Z =E{ZN))llz, . Z€ 2.

REO=0()2()+¢()
p(Z)=E{Z} +cl(Z-E{2})2(Z -E{Z}) + v (Z—E{Z})ll;,, Z2€ 2,

where @ and ¢ are the (standard) Gaussian cdf and pdf, respectively.
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EXAMPLES OF MEAN-SEMIDEVIATIONS - 2

- Any convex (S1), nonnegative (S2), increasing (S3), and nonexpansive (S4) piecewise

linear function ( ).
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EXAMPLES OF MEAN-SEMIDEVIATIONS - 3

- Countless other examples!

6/25



MOTIVATION FOR OPTIMIZATION OF MEAN-SEMIDEVIATIONS

- Relevant whenever variable risk assessment relative to the values of the respective
central deviation is desirable.
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MOTIVATION FOR OPTIMIZATION OF MEAN-SEMIDEVIATIONS

- Relevant whenever variable risk assessment relative to the values of the respective
central deviation is desirable.

- Typical examples:
- Part in manufacturing facilities.
and related
- Related areas:
- Supply chain optimization.
- Resource allocation (more broadly).

- Risk-aware Learning:

- Central research directions:
- Design of algorithms with desirable characteristics:

- Convergence analysis under reasonable assumptions, covering a wide range of problems.
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MAIN CONTRIBUTIONS

- MESSAGEP Algorithm':

- An efficient, data-driven Stochastic Subgradient Descent (SSD)-type procedure for iteratively
solving convex mean-semideviation problems to optimality.

"MESSAGEP = MEan-Semideviation Stochastic compositionAl subGradient dEscent of order p
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- We establish pathwise convergence, in the same strong sense of [Yang et al,, 2018].
- We derive explicit convergence rates of the orders of

- Our problem assumptions reveal a trade-off between the expansiveness of the random cost
and the smoothness of the risk regularizer.

- Our problem assumptions strictly generalize those of [Yang et al., 2018].

"MESSAGEP = MEan-Semideviation Stochastic compositionAl subGradient dEscent of order p
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THE MESSAGEP ALGORITHM



BASIC PROPERTIES OF THE BASE PROBLEM

Proposition (When are mean-semideviations convex-monotone?)
Fix p € [1,00) and choose any risk regularizer R : R — R. Then, as long as c € [0, 1],
the risk measure p is convex (convex, monotone and translation equivariant).
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Proposition (When are mean-semideviations convex-monotone?)
Fix p € [1,00) and choose any risk regularizer R : R — R. Then, as long as c € [0, 1],
the risk measure p is convex (convex, monotone and translation equivariant).

Corollary (When is (1) Convex?)
Fix p € [1,00) and choose any risk regularizer R : R — R. Then, as long as c € [0, 1],

the composite function ¢ () = p(F (-, W)) is convex on R" and (1) constitutes a
convex stochastic program.
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MEAN-SEMIDEVIATIONS IN COMPOSITIONAL FORM

- Define expectation functions

x/P. x>0 (whenp > 1),

4

o(x)
9" (x,y) 2E{(R(F(x,W) —y))’} and
h (x) 2 [XE {F (x, W)}],

for every admissible choice of F and Py, (the pushforward (distribution) of W).
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MEAN-SEMIDEVIATIONS IN COMPOSITIONAL FORM

- Define expectation functions

0() 2xP, x>0 (whenp>1),
g" (6y) 2E{(R(F(x,w) —y))’} and
h" (x) £ XE {F (x, W)}],
for every admissible choice of F and Py, (the pushforward (distribution) of W).

- Objective may be expressed as

- Equivalent formulation of the base problem:
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DIFFERENTIABILITY OF &ﬁ ()=p(F(,W))

Lemma (Differentiability of ¢F)

Under some technical assumptions:
where
1, ifp=1 ~
Vo(x) =< 0-n/p , VA ) =ES |1y | ¥F(x,w) |y and
yif p e (1,00)

Vg’ (x,y) = EQ p(R(F(x,W) — Y)Y’ YR (F(x, W) —y) |————— |},

respectively, for every (x,y) € Graphy (E{F (-, W)}).
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TAKE A CLOSER LOOK AT V¢

Vo' (x) = E{VF (x, W)} + cVh (x) Vg (hF (x)) Vo (gF (hF (x)))

h' (x) = [xE{F(x w)}]
o (" (0) =E{(R( —E{F (x,W)}))’}
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Vo' (x) = E{VF (x, W)} + cVh (x) Vg <hF (x)) Vo (gF (hF (x)>>

~ ' (x ):[xE{F(X W)}
g (h () =E{(R —E{F (x,W)}))}

If R (-) and gF (hf(-)> where known, a stochastic gradient could be formed.

- But both h' (-) and g~ <hF(-)) are !
- Not possible to generate a a stochastic gradient in a single sampling step.
- For fixed x, E{F (x, W)} can be recursively estimated using stochastic approximation.
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TAKE A CLOSER LOOK AT V¢

V¢l (x) = E{VF (x, W)} + cVA" (x) Vg (hf (x)) Ve (gF (h" 0))

~ h" (x) = [xE{F(x W)}]
g (h () =E{(R —E{F (x,W)}))}

If R (-) and gF (hf(-)> where known, a stochastic gradient could be formed.

- But both h' (-) and g (hf(-)) are !
- Not possible to generate a a stochastic gradient in a single sampling step.
- For fixed x, E{F (x, W)} can be recursively estimated using stochastic approximation.
- Same for E {(R (F (x, W) — y))}, for also fixed y.
- = Simplest Idea: TRACK h (-) and gE (hE (-)) using biased stochastic approximation!
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THE MESSAGEP ALGORITHM

: Initial points x’ e X, yo € R, e R, stepsize sequences {an}neN, {ﬂn}neN, {yn}neN, 11D
sequences {W{} _., {W;} _, and penalty coefficient c € [0, 1].

: Sequence {x"}

1. forn=0,1,2,...do

Obtain F(x", W;’“) and yF(x”7 W?“) from the SO.
Update (First SA Level):

neN

neN’

Y= (1= By + B (X, i)

4 Obtain F(x”, Wz”“) and yF(x”, WQ“) from the SO.
5:  Update (Second SA Level):

5 ifp=
2= Lt (R (W) ) 1

6:  Define auxiliary variables:
§—F (Xn’ W;n+1) _yn

5L = yF(x”, WQ“) - yF(x”, W?“)

A =8YYR(6) (R(5) (") ~P7P
7: Update (Third SA Level):

8: end for
13/25



ADVANTAGES OF THE MESSAGE” ALGORITHM
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ADVANTAGES OF THE MESSAGE” ALGORITHM

- Effective: If convergent, solves underlying problem to optimality.
- Compare with Sample Average Approximation (SAA).

- Efficient:
- Can exploit new information available to the decision maker.

- Suitable when information is available sequentially, and
decisions are made adaptively over time.

- Minimal and fixed time and space complexity per iteration.
- Suitable for problems with massive amounts of available data.

Good, but:
Does it converge?
Under what assumptions?
How fast?
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ANALYSIS OF
THE MESSAGEP ALGORITHM




PROPOSED STRUCTURAL FRAMEWORK

- For some measurable set Q¢ C €, such that P (Q¢) =1, let us define

m £ in

Xe;wigsszF(X,W(w)) and m, = sup sup F(x,W (w)).

XEX weQg

For P € [2,00] and Q € [P/(P—1), o], F and R satisfy the conditions:

C2 There exists a number V < oo, such that

sup V {F (x,W)} £ sup [IE {(F(X,W)f} _ (]E{F(x7W)})2] <v.
EE xeXx

C4 Whenever p > 1, it is true that —oco < m; < mj, < oo, and
0<e2R(M —my) <R(M, —m) 2 € < .
In other words, R is positively uniformly bounded within Rf 2l {(m — my,m, —m))}.
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PATHWISE CONVERGENCE OF THE MESSAGEP ALGORITHM

Theorem

Let B, € (0,1], v, € (0,1], for all n € N. Whenever p = 1, suppose that

whereas, whenever p > 1, choose yO € [my, my), e [sp, S”}, and suppose
additionally that

Then, as long as X* = arg minX6X¢F (x) # 0, the process {x”}neN generated by the
MESSAGE? algorithm satisfies

In other words, almost everywhere relative to P, the process {x”}
random point in the set of optimal solutions of (1).

neN converges to a

16/25



COMMENTS

- And what about actual stepsize selection?

- Convergence is guaranteed for subharmonic stepsizes (case p > 1)

anEnﬁa ﬁnE D) and "/nET37 HGN+,

as long as

7

§<7'1§1,

3

Z<T2<2T-‘7'| and

1

E<T3<27—271'

17/25



RATES: CONVEX CASE

- Itis possible to show that by forming estimates

. 1 :
P > > X, vneNT,
[ﬂ/ 1 i=n—[n/2]

the MESSAGEP algorithm satisfies

with stepsizes chosen as

1 1
a”:W and B,= W when p =1
1 1 1
a, = —=, B,=—~ and v,= ——=, whenp>1
n ﬂ7/8 n n3/4 n n‘\/2

- Convergence in the general case is slow, especially when p > 1.
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RATES: STRONGLY CONVEX CASE - 1

- Assume that qﬁF is in the sense that there exists o > 0, such that

oF ()= ol > alx—x|P, wxex.

19/25



RATES: STRONGLY CONVEX CASE - 1

- Assume that qﬁF is in the sense that there exists o > 0, such that
¢ ()=l >o|x—x|3, wxeaX.

- But how can we guarantee such a condition?

19/25



RATES: STRONGLY CONVEX CASE - 1

- Assume that qﬁF is in the sense that there exists o > 0, such that

¢ ()=l >o|x—x|3, wxeaX.
- But how can we guarantee such a condition?

Proposition (When is (1) Strongly Convex?)

Fix p € [1,00) and choose any risk regularizer R : R — R. Then, as long as c € [0, 1],
and if, for o > 0 and for every w € ]RM, F (-,w) is o-strongly convex on X (such that

F(,w)—o ||~H§ is convex on X), the composite function ¢ ()= p(F(,W)) is also

o-strongly convex on X.

Proof is very simple and is due to the risk measure p being convex (convex, monotone

):

and

o ()=l = p(F(W) = ollI5= p (F (W) = o |113)

19/25



RATES: STRONGLY CONVEX CASE - 2

Theorem (Rate | Strongly Convex Case | Subharmonic Stepsizes | p > 1)
Suppose that zjf is o-strongly convex, and that
1
é > Bn é T
(o

1
a, and ’ynéﬁ, vn € N,

where 1/2 < 13 < 7, < 1, and with initial values ay = By = o = 1. Define

=1l
1/ (1) 3 a L
n = 1— €N and R(m,, 13) = > 1
o) ’7< ) (12, 73) 1— max {2 — 27y, 27, — 275, 73}

Then, for every n € N"D(TZ), it is true that

for some constant 0 < T < oo n particular, if, for some e € [0,1/4) and § € (0, 2),
7 =3/4+€ and T3 =1/2+ Je,

then the MESSAGE” algorithm satisfies

foreveryn e N”O(E), for each fixed e.
20/25



RATES: STRONGLY CONVEX CASE - 3

Theorem (Rate | Strongly Convex Case | Subharmonic Stepsizes | p = 1)

Suppose that ¢>F is a-strongly convex, and that

1 1
anéﬁ, and Bnéﬁ vn e N,

where 1/2 < 1, < 1, and with initial values oy = By = 1. Choose n, = n, (7)) as in
the previous slide, and define

1
>
—max{2 — 27,7, }

R(m) £ . 1.

Then, for every n € N™(™2) it is true that

for some constant 0 < T <o In particular, the exponent in the denominator is
maximized at 75 = 2/3, yielding a rate of the order of © <n72/3>.
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+ (R (-))” must be differentiable everywhere.
(RO

- F (-, W) must be differentiable everywhere on X. If not, R must be partially constant!

p
)’ must be Lipschitz.
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- We proposed a new framework of structural assumptions, under which:

- We established pathwise convergence of the MESSAGE” algorithm, in the strong sense of
[Yang et al, 2018].

- We derived explicit convergence rates of the MESSAGE” algorithm, matching and improving
the state of the art.

- Our framework:

- provably strictly generalizes that of [Yang et al, 2018].

- reveals a well-defined structural trade-off between the random cost and the
mean-semideviation risk measure considered.

- Many directions for
- Adaptive risk-averse optimization in nonstationary settings.
- Risk-averse reinforcement learning and approximate dynamic programming.
- Acceleration for problems with more favorable structure (second-order differentiability, etc.)
- Applications: Supply chain management, multi-agent network control and resource

allocation.
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THE END

THANK YoU!
QUESTIONS?



BACKUP!




How “HARD” CONDITION C3 REALLY 1S?

Proposition (Ensuring Validity of C3)
Assume that, whenever p > 1, condition C4 is satisfied. Then, the following are true:

1. Suppose that (R (-)) is differentiable on RF, and there is Dg p < oo, such that

V(RGP Y (RONF| < Drpli=val, ¥ 02) € ]

Then, condition C3 is satisfied for every Q € [P/(P—1), o<, for every P € [2, o).
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V(RGP Y (RONF| < Drpli=val, ¥ 02) € ]

Then, condition C3 is satisfied for every Q € [P/(P—1), o<, for every P € [2, o).

- In fact, !

But we need more notation...
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