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The Monotone Sharpe ratio

Portfolio selection

Let X be the benchmark-adjusted future return of some stock portfolio.

The Sharpe ratio (W. F. Sharpe, 1966):

S(X) =
EX

σ(X)
.

Markowitz portfolio selection: let Ri, i = 0, . . . , n, be asset returns;
for given δ > 0 find x ∈ Rn+1 which

minimizes σ(x ·R) subject to
∑
i
xi = 1, E(x ·R) > δ.
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Efficient frontier

Assume R0 = 0 (a risk-free asset). Then the solution in the (σ,E)
coordinates:

0

E = S∗σ
E

σ

The slope of the efficient frontier is the maximal Sharpe ratio S∗:

S∗ = max
x

S(x ·R).
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The solution is not monotone

It may be possible to obtain a higher Sharpe ratio by disposing of a part
of the return:

S(Y ) > S(X) for some Y 6 X.

0

Ŝσ

E

σ
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Monotone Sharpe ratio

Define the monotone Sharpe ratio

S(X) = sup
Y 6X

E(Y )

σ(Y )
,

where sup is over random variables Y such that P (Y 6 X) = 1.

The following formula can be proved for X ∈ L2 (Z., 2015):

1

1 + (S(X))2
= inf

c>0
E(1− cX)2+,

where inf is over real numbers c > 0 and (. . .)+ = max(0, . . .).
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Connection between MSR and bPOE

Conditional value at risk (CVaR)

Let Q(X,λ) denote the quantile function of a random variable X:

Q(X,λ) = x such that P (X 6 x) = λ, λ ∈ [0, 1],

and Q(X,λ) denote the superquantile function (CVaR) for X ∈ L1:

Q(X,λ) = E(X | X > Q(X,λ)).

The well-known representation (Rockafellar, Uryasev, 2000):

Q(X,λ) = inf
c∈R

(
1

1−λE(X − c)+ + c
)
.
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CVaR in Lp

In a similar way, define for X ∈ Lp, p ∈ [1,∞) (Krokhmal, 2007):

Qp(X,λ) = inf
c∈R

(
1

1−λ‖(X − c)+‖p + c
)
.

Define the inverse of Qp(X,λ) in λ (buffered probability that X > x):

P p(X,x) =

{
1−Q−1p (X,x), if x > EX,

1, if x 6 EX

(for simplicity, it is assumed here that X is unbounded from above).

For L1, bPOE was studied in Rockafellar, Royset (2010), Mafusalov,
Uryasev (2014).
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Quantile and superquantile

Q(X,λ)

0 λ

x

λ = 1

Q(X,λ)

EX

POE and bPOE

0

λ

x

λ = 1

P (X,x)P (X > x)

EX

It can be proved similarly to Mafusalov, Norton, Uryasev (2014):

P p(X,x) = inf
c>0
‖(c(X − x) + 1)+‖p.
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MSR and bPOE

For X ∈ L2:
P 2(−X, 0) = (1 + (S(X))2)−1/2.

For X ∈ L1:
P 1(−X, 0) = (1 + S1(X))−1,

where
S1(X) = inf

Y 6X

EY

E|Y −med(Y )|
.

There is no simple formula for p 6= 1, 2 but a dual representation can be
proved for MSR in Lp, p ∈ [1,∞).
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If E(X) > 0, the following representation is true for p > 1:

(Sp(X))q = max
a,b∈R

{
b− E

(
q−1
qp

∣∣(aX + b)+ − q
∣∣p + (aX + b)+

)}
.
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A dynamic maximization problem for the Sharpe ratio

A market model

– One riskless asset with price Bt = ert, where r > 0.

– One risky asset, a geometric Brownian motion:

dSt = St(µdt+ σdWt), S0 = 1.

– A trading strategy: (vt, ut), the amount of money invested in the
riskless and risky assets.

– The capital Xu,v
t = vt+ut of a strategy (vt, ut) satisfies the equation

dXu,v
t = vt

dBt
Bt

+ ut
dSt
St

, Xu,v
0 = x0 > 0.

Equivalently: dXu,v
t = (rvt + µut)dt+ σutdWt.
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– The model can be reduced to Bt ≡ 1, then

dXu
t = µutdt+ σutdWt, Xu

0 = x0.

– The class of admissible control processes:

U = {ut : E
∫ T

0
u2tdt} <∞.

The dynamic Sharpe ratio maximization problem on [0, T ]:

maximize S(Xu
T ) =

EXu
T − x0

σ(Xu
T )

over u ∈ U .
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Literature review

The problem can be reduced to the constraint optimization problem

minimize: E(Xu
T )

2

subject to: EXu
T = δ.

1. Richardson (1989) solved this problem by martingale methods:

First, find the optimal terminal capital X∗T in the set {Xu
T | u ∈ U} of

capitals of all admissible strategies.

Then, find the process X∗t , t ∈ [0, T ].

Finally, find the optimal u∗t .
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2. Pedersen, Peskir (2013) solved the problem by solving the Hamilton–
Jacobi–Bellman equation for the Lagrangian:

minimize E(Xu
T )

2 − λEXu
T . (∗)

The HJB equation:

inf
u∈R

{
V ′t + µuV ′x +

σ2

2 u
2V ′′xx

}
= 0.

V (T, x) = x2 − λx,

where V (t, x) is the minimal value of (∗) under condition Xt = x.

The key idea is to look for the solution in the form

V (t, x) = a(t)x2 + b(t)x+ c(t).
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A simple (and more general) solution using bPOE and MSR

We’ll first solve the bPOE minimization problem for p > 1:

V = min
u∈U

P p(−Xu
T , 0).

From the representation of P p(X,x):

V = min
c>0

min
u∈U
‖(1− cXu

T )+‖p = min
u∈U
‖(1−Xu

T )+‖p,

where we use that c can be included in the control by changing ũt = cut.
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Then
V p = min

u∈U
E|X̃u

T |p

for
dX̃u

t = −µutdt− σutdWt, X̃u
0 = 1.

We can remove (·)+ since it’s never optimal to go below zero.

Let wt = −ut/X̃u
t . Then

E|X̃u
T |p = E

{
ZT exp

(∫ T
0

(
µpws +

1
2σ

2(p2 − p)w2
s

)
ds
)}
,

where Zt > 0 is a martingale (cstochastic exponent of σpwt w.r.t. Wt)
and we can show that EZT = 1.
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By changing the measure to dQ = ZTdP we obtain

E|X̃u
T |p = EQ

{
exp
(∫ T

0

(
µpws +

1
2σ

2(p2 − p)w2
s

)
ds
)}
,

which is minimized by minimizing the integrand for each t:

w∗ ≡ − µ

σ2(p− 1)
.

Then the optimal control in the original problem

ut =
µ

σ2(p− 1)
(1−Xu

t ).

Since any control ũt = Cut will be optimal as well, the family of optimal
control functions is

u(t, x) =
µ

σ2(p− 1)
(C − x), C > 0.

16/22



S-optimality is the same as S-optimality

The previous result provides the solution to the problem:

maximize S(Xu
T ) = sup

Y 6Xu
T

EY

σ(Y )
over u ∈ U .

We show that the same strategy also maximizes S(Xu
T ).

Suppose for optimal u∗ there is Y 6 Xu∗
T such that S(Y ) > S(Xu∗

T ).
Since the BS-market is complete, there is y < 0 and a control ut so that
Xu

0 = y0 < 0 and Xu
T = Y .

Then the capital process X̃t = y0 +Xu
t has a higher Sharpe ratio than

Y and a higher monotone Sharpe ratio than Xu∗ – a contradiction.
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A mean-variance optimal selling problem

As before, one risky asset:

dSt = St(µdt+ σdWt), S0 = 1.

Consider the problem:

maximize
ESτ − 1

σ(Sτ )
over stopping times τ.

The interesting case is only when µ ∈ (0, σ
2

2 ):

– µ 6 0: the optimal τ = 0,

– µ > σ2

2 : the process St = exp(σBt + (µ− σ2

2 )t) reaches any level A;
take τ = τA and A→ +∞.
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A result of Pedersen and Peskir (2012)

Pedersen and Peskir considered an equivalent problem

maximize ESτ − cVarSτ .

Their solution briefly:

1. Equivalence to a constrained problem: min
τ
{ES2

τ | ESτ = δ}.

2. Lagrange multipliers: min
τ
{ES2

τ − λESτ}.

3. Markov formulation: the value function V (s) = min
τ
Es(S

2
τ − λSτ ),

where Es(·) = E( · | S0 = s).

4. Apply methods for Markov optimal stopping problems.
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A simple solution using the monotone Sharpe ratio

First, let’s maximize the monotone Sharpe ratio, or, equivalently

minimize P 2(−(Sτ − x), 0) over Markov times τ.

From the representation of P 2(X, 0):

V = min
c>0

min
τ
E(1− c(Sτ − x))2+.

The inner problem minτ E(. . .) is Markovian, and by a simple argument
it can be shown that the solution is

τc = inf{t > 0 : St > bc},

where τc =∞ if St < bc for all t.

20/22



Hence, for the optimal τ∗ the distribution of Sτ∗ is binomial:

Sτ∗ =

{
b∗, if τ∗ <∞,
0, if τ∗ =∞.

Next observe that if τ∗ maximizes S(Sτ ), then

S(Sτ∗) = sup
Y 6Sτ∗

EY − x
σ(Y )

=
ESτ∗ − x
σ(Sτ∗)

,

i.e. Y = Sτ∗ , which follows from that only FSτ∗ -measurable Y can be
considered.

Hence, the same τ∗ maximizes both S and S.
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To find the optimal level b, use the well-known result that:

P (τb <∞) = bγ−1, where γ = 2µ
σ2 < 1.

Then
ESτb − x
σ(Sτb)

=
bpb − x

b
√
pb(1− pb)

=
bγ − x

b
γ+1
2 (1− bγ−1)

1
2

.

From here, b > 1 which maximizes the right-hand side can be found
numerically.
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Thank you for your attention


