Risk Management with
POE, VaR, CVaR, and bPOE

Stan Uryasev

Department of Industrial and Systems Engineering
University of Florida, Gainesville, FL
uryasev@ufl.edu

April 2017 (presented)
May 2018 (updated)

Joint work with Drew Kouri, Sandia Lab
Supported by DARPA EQUiPS grant SNL 014150709
Lower Bound vs. Average of Tail

Presentation compares two concepts for measuring and optimization of tails of probabilistic distributions

- Optimistic concept based on lower bound of outcomes in the tail
- Conservative concept based on average value of the tail
Concept 1: Lower Bound of the Tail

Two equivalent variants:

- Fix threshold x, which is the lower bound of outcomes in the tail, and constrain Probability of Exceedance (POE): $p(x) \leq 1 - \alpha$

- Fix probability of the tail, $1 - \alpha$, and constrain quantile, called Value-at-Risk (VaR) in finance: $q(\alpha) \leq x$

$$q(\alpha) \leq x \iff p(x) \leq 1 - \alpha$$
Concept 2: Average Value of the Tail

Two equivalent variants:

- Fix mean value of the tail, \(x \), and constrain tail probability, called Buffered Probability of Exceedance (bPOE): \(\bar{p}(x) \leq 1 - \alpha \)

- Fix probability of the tail, \(1 - \alpha \), and constrain mean value of the tail, called Superquantile, Average VaR, Tail VaR, CVaR, and Expected Shortfall in finance: \(\bar{q}(\alpha) \leq x \)

\[
\bar{q}(\alpha) \leq x \iff \bar{p}(x) \leq 1 - \alpha
\]
CDF and POE

- $X =$ random “loss”
- Cumulative Distribution Function (CDF) = $F(x) = \mathbb{P}\{X \leq x\}$
- Probability of Exceedance (POE) = $p(x) = \mathbb{P}\{X > x\} = 1 - F(x)$, also known as Survival, Survivor, or Reliability function.
Risk Management with POE and CDF

Requirement: **probability that loss exceeds threshold** \(x \) **is small**

\[
p(x) \leq 1 - \alpha \quad \text{e.g.,} \quad 1 - \alpha = 1 - 0.95 = 0.05
\]

- **Nuclear:** probability that release of radiation exceeds some level
- **Finance:** default probability of a company \((\text{Assets-Liability} < 0)\)

Equivalently: **probability that loss is below threshold** \(x \) **is large**

\[
p(x) = 1 - F(x) \leq 1 - \alpha \quad \Longrightarrow
\]

\[
F(x) \geq \alpha \quad \text{e.g.,} \quad \alpha = 0.95
\]

- **Material Science:**
 material should withstand the load \(x \) with high probability
Quantile \(q(\alpha) \) is inverse of CDF.

Quantile is a solution of equation \(F(x) = \alpha \), i.e. \(F(q(\alpha)) = \alpha \).

Quantile is a solution of equation \(p(x) = 1 - \alpha \), i.e., \(p(q(\alpha)) = 1 - \alpha \).
Risk Management with Quantiles (VaR)

Requirement: Quantile with confidence α is less than some threshold $q(\alpha) \leq x$

- Finance: e.g., VaR for daily loss is below 1 billion
Equivalence of POE and Quantile Constraints

Some engineering areas use POE other areas use Quantiles.

Constraints on POE and quantiles are equivalent. It is a matter of convenience.

Finance uses quantiles (Value-at-Risk or VaR) specified in USD.

Nuclear engineering uses POE, maybe because probabilities are more understandable to people than radiation dosages.
POE(\(x\)) \leq 1 - \alpha \implies \text{quantile}(\alpha) \leq x

Continuous and strictly increasing CDF

\[p(x) \leq 1 - \alpha \]

\[\implies F(x) \geq \alpha \]

\[\implies F^{-1}(F(x)) \geq F^{-1}(\alpha) = q(\alpha) \]

\[\implies x \geq q(\alpha) \]

\[\implies q(\alpha) \leq x \]
\text{quantile}(\alpha) \leq x \quad \implies \quad \text{POE}(x) \leq 1 - \alpha

Continuous and strictly increasing CDF

\[q(\alpha) = F^{-1}(\alpha) \leq x \]

\[\implies F(F^{-1}(\alpha)) \leq F(x) \]

\[\implies \alpha \leq F(x) \]

\[\implies \alpha \leq 1 - p(x) \]

\[\implies p(x) \leq 1 - \alpha \]
POE and Quantile have poor mathematical properties:

- nonconvex in random variable
- discontinuous for discrete distributions w.r.t. parameters
- difficult to manage (optimize)
- are not conservative: do not take into account the values of outcomes in the tail of the distribution
Superquantile (CVaR) vs Quantile (VaR)

Superquantile $\bar{q}(\alpha) = \text{average of the tail in excess of quantile (VaR)}$

$\bar{q}(\alpha) = \text{inverse of } \bar{F}(x) \text{ which is CDF of Superdistribution (red curve)}$
Formal Superquantile (CVaR) definition:
continuous distributions:
\[\bar{q}(\alpha) = \mathbb{E}\{ X \mid X > q(\alpha) \} \]
general (including discrete) distributions:
\[\bar{q}(\alpha) = \frac{1}{1 - \alpha} \int_{\alpha}^{1} q(\alpha) \, d\alpha = \min\{ C + \frac{1}{1 - \alpha} \mathbb{E}[X - C]^+ \}, \]
where \([X - C]^+ = \max\{0, X - C\} \)

- takes into account values of outcomes in the tail of the distribution
- coherent risk measure (the best from theoretical perspective)
- convex in random variable
- continuous w.r.t. parameters
- easy to manage and optimize with convex and linear programming, (Rockafellar & Uryasev (2000))
bPOE vs POE

Buffered Probability of Exceedance (bPOE) = $1 - \bar{F}(x) = 1 - \alpha$, where α satisfies equation $\bar{q}(\alpha) = x$.

Superdistribution $\bar{F}(x)$ (Rockafellar & Royset (2013)). Special case of bPOE with $x = 0$ (Rockafellar & Royset (2010)). General bPOE case and optimization representation (Norton & Uryasev (2014), Mafusalov & Uryasev (2014)).
bPOE properties

bPOE: will be a new hit in risk management, similar to CVaR

- optimization representation: \(\bar{p}(x) = \min_{a \geq 0} \mathbb{E}[a(X - x) + 1]^+ \)
- takes into account values of outcomes in the tail of the distribution
- quasi-convex in random variable \(X \)
- lowest quasi-convex (in \(X \)) upper bound of POE
- bPOE is about twice bigger than POE
- continuous w.r.t. parameters
- easy to manage (optimize with convex and linear programming)

\[\bar{q}(\alpha) \leq x \quad \iff \quad \bar{p}(x) \leq 1 - \alpha \]
Low Bound vs. Average of Tail

\[q(\alpha) \leq x \iff p(x) \leq 1 - \alpha \]

\[\bar{q}(\alpha) \leq x \iff \bar{p}(x) \leq 1 - \alpha \]
Risk Management in Different Fields

\[p(x) \leq 1 - \alpha \quad \text{nuclear, material, finance} \]

\[q(\alpha) \leq x \quad \text{finance} \]

\[\bar{q}(\alpha) \leq x \quad \text{finance} \]

\[\bar{p}(x) \leq \alpha \quad \text{optimization of large physical systems} \]
Example: bPOE Minimization

- \(L(z) = c_0 + \sum_{i=1}^{n} c_i z_i \) is a linear function w.r.t. \(z = (z_1, \ldots, z_n) \) with random coefficients \((c_0, c_1, \ldots, c_n)\)

- minimize bPOE of \(L(z) \) w.r.t. \(z \)

\[
\min_z \bar{p}(x, L(z)) = \min_z \min_{a \geq 0} \mathbb{E} \left[a(L(z) - x) + 1 \right]^+
\]

\[
= \min_{z, a \geq 0} \mathbb{E} \left[a(c_0 + \sum_{i=1}^{n} c_i z_i - x) + 1 \right]^+
\]

\[
= \min_{z, a \geq 0} \mathbb{E} \left[(c_0 - x) a + \sum_{i=1}^{n} c_i a z_i + 1 \right]^+
\]

\[
= \min_{y, a \geq 0} \mathbb{E} \left[(c_0 - x) a + \sum_{i=1}^{n} c_i y_i + 1 \right]^+
\]

- change of variables \(az \rightarrow y \) reduces the problem to convex and linear programming w.r.t. variables \(y, a \)