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Introduction
Let x(t) be an Rd -valued Markov process with a transition
kernel q(s, y ; t , x), 0 ≤ s ≤ t ≤ T .

Start with an initial density p0(x), then the density at time T is
given by

pT (x) =

∫
q(0, y ; T , x)p0(y)dy .

Suppose that we observe a different density πT (x) at time T .
Then, our assumption about the transition kernel of x(t) seems
wrong.

Then, the following question arises: What is the transition
kernel q̃(s, y ; t , x) that is close, in some sense, to q(s, y ; t , x)
and for which

πT (x) =

∫
q̃(0, y ; T , x)p0(y)dy .
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Remark

The above question is closely related to the problem of
assigning initial and final conditions to the Markov process x(t);
and such a problem has been well studied in the context of
reciprocal processes (e.g., Jamison (1974/75); Beurling
(1960)).
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Definition (1)

Let x(t), 0 ≤ t ≤ T , be a stochastic process defined on a
measure space (Ω,F ,P). For 0 ≤ s < t ≤ T , define the
following σ-algebras:

As,t = σ
{

x(τ)|s ≤ τ ≤ t
}
,

Bs,t = σ
{

x(τ)|τ ≤ s or τ ≥ t
}
.

Then, we say that x(t) is a reciprocal process if

P
{

A ∩ B|x(s), x(t)
}

= P
{

A|x(s), x(t)
}

P
{

B|x(s), x(t)
}

for any 0 ≤ s < t ≤ T and A ∈ As,t , B ∈ Bs,t .
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Under some technical assumptions, a reciprocal process
admits an intermediate density p(s, x ; t , y ; u, z), i.e.,

p(s, x ; t , y ; u, z) =
q(s, x ; t , y)q(t , y ; u, z)

q(s, x ; u, z)
, 0 ≤ s < t < u ≤ T ,

which expresses the conditional density of x(t) given x(s) = x
and x(u) = z.

Remark

Suppose that we are given two probability measures µ0 and µT
and a transition kernel q(s, y ; t , x) for 0 ≤ s < t ≤ T . Then, we
can construct a reciprocal process (with an intermediate
density p(s, x ; t , y ; u, z)) such that x(0) and x(T ) are distributed
according to µ0 and µT , respectively.
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General observation:
Let q(s, y ; t , x) be a transition kernel associated with the
following diffusion process x(t)

dx(t) = b(t , x(t))dt + σ(t , x(t))dW (t), 0 ≤ t ≤ T .

Then, constructing reciprocal processes corresponds to a
change of measure on the path-space.

Important observation:
Consider the following controlled-diffusion process xu(t),
0 ≤ t ≤ T

dxu(t) =
(
b(t , xu(t)) + a(t , xu(t))u(t)

)
dt + σ(t , xu(t))dW (t),

where a(t , xu(t)) = σT (t , xu(t))σ(t , xu(t)).

Suppose that we are given two probability measures µ0 and µT .
Then, what is the admissible minimum energy control u∗ for
which xu∗

(t) evolves from µ0 to µT ?
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Remark

In this talk, our main purpose is to throw some light on the
structure of controlled-diffusion processes pertaining to a chain
of distributed systems.

At the same time, we also touch some related questions
concerning entropy minimization subject to an initial distribution
and a final attainable distribution for such controlled-diffusion
processes.



Preliminaries

Consider the following distributed system

dx1
t = m1

(
t , x1

t , . . . , x
n
t
)
dt + σ

(
t , x1

t , . . . , x
n
t
)
dW (t)

dx2
t = m2

(
t , x1

t , . . . , x
n
t
)
dt

dx3
t = m3

(
t , x2

t , . . . , x
n
t
)
dt

...
dxn

t = mn
(
t , xn−1

t , xn
t
)
dt , 0 ≤ t ≤ T


, (1)

where

I x i is an Rd -valued state for the i th subsystem, with
i ∈ {1,2, . . . ,n},

I the functions m1 : (0,∞)× Rnd → Rd and
mi : (0,∞)× R(n−i+1)d → Rd for i = 2, . . . ,n are uniformly
Lipschitz, with bounded first derivatives,
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I σ : [0,∞)× Rnd → Rd×d is Lipschitz with the least

eigenvalue of σ σT uniformly bounded away from zero, i.e.,

σ
(
t , x1

t , . . . , x
n
t
)
σT (t , x1

t , . . . , x
n
t
)
≥ λId , ∀(x1

t , . . . , x
n
t ) ∈ Rnd ,

for all for t ≥ 0 and some λ > 0,

I W (with W (0) = 0) is a d-dimensional standard Wiener
process.

Notation:

I we use bold face letters to denote variables in Rnd ,

I for any t ≥ 0, the solution
(
x1

t , x
2
t , . . . , x

n
t
)

is denoted by xt ,

I for
(
t , (x j−1, . . . , xn)

)
∈ (0,∞)× R(n−j+1)d , j = 2, . . . ,n, the

function x j 7→ mj
(
t , x j−1, . . . , xn) is continuously

differentiable w.r.t. x j and its derivative denoted by(
t , x j−1, . . . , xn) 7→ Dx j mj

(
t , x j−1, . . . , xn).
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Then, we can write (1) as follow

dxt = M(t ,xt )dt + G σ(t ,xt )dWt , (2)

where M =
[
m1,m2, . . . ,mn

]
is an Rnd -valued function and

G =
[
Id ,0, . . . ,0

]T stands for an (nd × d) matrix that embeds
Rd into Rnd . Moreover, the infinitesimal generator associated
with (2) is given by

Lt ,x =
1
2

tr
(
a(t ,x)D2

x1

)
+ m1(t ,x)Dx1 +

∑n

j=2
mj(t ,xj−1)Dx j ,

where a(t ,x) = σ(t ,x)σT (t ,x).
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Assumption (1)

(a) The functions m1(t ,x) and mj(t ,xj−1) for j = 2, . . . ,n satisfy
Hölder conditions with respect to x and xj−1, respectively.
Moreover, a(t ,x) is a bounded C∞

(
[0,T ]× Rnd)-function;

a(t ,x) and Dx i a(t ,x) are bounded and satisfy Hölder
conditions with respect to both x and t (e.g., Hörmander
(1967)).

(b) The infinitesimal generator Lt ,x is hypoelliptic.

Remark

The hypoellipticity assumption is related to a strong
accessibility property of controllable nonlinear systems that are
driven by white noise. Note that the hypoellipticity assumption
also implies that the diffusion process xt has a transition kernel
q(s,y, t ,x) with a strong Feller property.
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Note that, from Assumption (1), the parabolic PDE

∂f
∂t

+ Lt ,xf = 0 in [0,T )× Rnd

has a fundamental solution q(s,y, t ,x) which is twice
continuously differentiable with respect to y and continuously
differentiable with respect to s.
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Moreover, for any positive measurable function g(x) such
that ∫

Rnd
q(0,x,T , z)g(z)dz < +∞ for some x ∈ Rnd .

Then, the function

h(t ,x) =

∫
Rnd

q(t ,x,T , z)g(z)dz

belongs C1,2
b

(
[0,T ]× Rnd).

Remark

Note that the function h(t ,x) is the kernel of the operator(
∂/∂t + Lt ,x

)
, i.e.,

(
∂h/∂t + Lt ,xh

)
= 0.
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Remark
Note that a continuous change of measure on the path-space is
related to changing the drift of the diffusion process associated
with (2).

Then, we have the following results.

Proposition (1)

Suppose that xt is a weak solution of (2). Let the function
h(t ,x) ∈ C1,2

b

(
[0,T ]× Rnd) be a strictly positive solution to

following

∂h
∂t

+ Lt ,xh = 0 in [0,T )× Rnd

such that E
{

h(t ,x)
}
< +∞ and

h(s,x) = Es,x
{

h(t ,x)
}
, 0 ≤ s < t < T .
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Then, the following SDE

dxh
t =

(
M(t ,xh

t ) + G a(t ,xh
t )Dx1 log h(t ,xh

t )
)

dt + G σ(t ,xh
t )dWt

admits a weak solution in [0,T ) and, moreover, its transition
kernel is given by

qh(s,y, t ,x) =
q(s,y, t ,x)h(t ,x)

h(s,y)
.

Proof.
The proof involves introducing a martingale process
z(t) = h(t ,x)/h(0,x0). Then, using change of measure
dQ
dP = z(T − ε), with ε > 0, we can show that

EQ
s,x
{

f (x)
}

=

∫
qh(s,x, t ,y)f (y)dy < +∞

for any test function f ∈ C∞0 (Rnd ). 2
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Recall the following:

Definition (2)

Assume that µ and ν are σ-finite measures defined in the same
measure space. Then, the relative entropy of µ w.r.t. ν is
defined by

H(µ|ν) =


∫

log
(dµ

dν

)
dµ, if µ� ν,

+∞ otherwise.
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Proposition (2)

Let µ0 and µT be two probability measures on Rnd and the
transition probability density q(s,y, t ,x). Then, there exists a
unique pair of σ-finite measures (ν0, νT ) on Rnd such that the
measure µ on Rnd × Rnd defined by

µ(E) =

∫
E

q(0,y,T ,x)ν0(dy)νT (dx)

has marginals µ0 and µT . Furthermore, ν0 � µ0 and νT � µT
(i.e., they are mutually absolutely continuous measures).



Statement of the problem

Consider the following controlled-diffusion process

dxu
t =

(
M(t ,xu

t ) + G ut
)
dt + G σ(t ,xu

t )dWt , (3)

where ut is an admissible control that satisfies

(i) ut is σ
{

xu
t
}

-measurable;

(ii) (3) admits a weak solution in [0, T); and

(iii) E
∫ T

0

∥∥ut
∥∥2

a−1dt < +∞, where
∥∥ut
∥∥2

a−1 ,
∥∥σ−1(t ,xu

t )ut
∥∥2.
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Assume that we are given two probability measures µ0 and µT ,
then we consider the following problem:

Problem (P)

Find an optimal admissible control u∗t such that

(1) xu∗

0 is distributed according to µ0, and xu∗

T according µT ;
and

(2) the optimal admissible control u∗t (among all admissible
controls satisfying condition (i)) minimizes the following cost
functional

J(ut ) = E
∫ T

0

1
2
∥∥ut
∥∥2

a−1dt .
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Assume that xt is a weak solution in [0,T ] to the following

dxt = M(t ,xt )dt + Gσ(t ,xt )dWt , x0 = ξ,

where ξ is distributed according to µ0, with E|ξ|2 < +∞.

Let St be an operator, acting on the set of σ-finite measures on
Rnd , defined by

dStµ

dλ
(xt ) =

∫
q(0,y, t ,x)µ(dy),

where dStµ/dλ is the Radon-Nikodym derivative w.r.t. the
Lebesque measure λ.



Main results - Connection with stochastic control
problems

In what follows, using the logarithmic transformations
approach from Fleming (e.g., Fleming (1978/782)), we provide
a condition on the existence of an optimal admissible control for
Problem (P).

Remark
The result mainly relies on the interpretation of log h(t ,x) as a
value function for a stochastic control problem associated with
the distributed systems, which is amounted to changing the drift
term by a certain perturbation suggested by Jamison in the
context of reciprocal processes (cf. Proposition (2)).

Specifically, we consider the following conditions:
I with a deterministic initial condition; and
I with a random initial condition.
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First, consider Problem (P) with a deterministic initial condition,
i.e., when µ0 assumes a Dirac measure that is concentrated at
a point ξ ∈ Rnd .

Proposition (3)

Suppose that µ0 is a Dirac measure which is concentrated at a
point ξ ∈ Rnd . Further, assume that

H(µT |STµ0) < +∞

and let h(t ,x) be given by

h(t ,x) =

∫
q(t ,x,T , z) log

dµT

dSTµ0
(z)dz. (4)

Then, u∗t = a(t ,xt )Dx1 log h(t ,xt ) solves Problem (P) with an
optimal value of

J(u∗t ) = H(µT |STµ0).



Connection with stochastic control problems . . .

Remark

Note that the “energy” J(ut ) = E
∫ T

0
1
2

∥∥ut
∥∥2

a−1dt has an
interpretation in terms of the relative entropy.

Suppose that Pxt and Pxu
t

are measures generated by xt and xu
t

on the path-space C2([0,T ];Rnd ). Then, using Girsanov
transformation, we have the following

H(Pxu
t
|Pxt ) =

∫
log

dPxu
t

dPxt

dPxu
t

= E

{∫ T

0
σ−1(t ,xu

t )utdWt −
∫ T

0

1
2
∥∥ut
∥∥2

a−1dt

}
≡ J(ut ).
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Remark

Moreover, under the optimality condition, we have the
following

H(Pxu
t
|Pxt ) = H(µT |STν0)

that implies the global relative entropy is exactly equal to the
relative entropy between the final densities.
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Assume that ξ is distributed according to a measure µ0. Note
that, from Proposition (2), for µ0 and µT (with µT � STµ0),
there exist two σ-finite measures ν0 and νT such that

dµT

dλ
= ρT (x)

∫
q(0,y,T ,x)ν0(dy)

, πT (x)

and

dµ0

dν0
=

∫
q(0,x,T , z)ρT (z)dz,

where ρT (xt ) = dνT/dν0.



Connection with stochastic control problems . . .
Then, for any initial random variable x0 = ξ distributed
according to ν0 and satisfying E|ξ|2 < +∞, we have the
following result which is a generalization of
Proposition (3).

Proposition (4)

Suppose that H(µT |STν0) < +∞,
∫ (

dµ0/dν0
)
dµ0 < +∞. Let

h(t ,xt ) be given by

h(t ,xt ) =

∫
q(t ,x,T , z)ρT (z)dz.

Then, u∗t = a(t ,xt )Dx1 log h(t ,xt ) solves Problem (P) with an
optimal value of

J(u∗t ) = E
∫ T

0

1
2
∥∥u∗t

∥∥2
a−1dt

= H(µT |STν0)− H(µ0|ν0).
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Remark

Note that the conditions under which Proposition (4) holds are
rather difficult to meet. However, when µ0 has compact
support, we can replace them with suitable conditions.

Proposition (5)

Suppose that µ0 has compact support and H(µT |STµ0) < +∞.
Then, we have

H(µT |STν0) < +∞ and
∫

dµ0

dν0
dµ0 < +∞.



On the invariance property of path-space
measure

If xt is a weak solution of (2) with M(t ,x) ∈ C2
b([0,T ]×Rnd ;Rnd )

and σ(t ,x) ∈ C2
b([0,T ]× Rnd ;Rd×d ). Then, we can consider

determining an asymptotic estimate for the probability of a
small tube around C2([0,T ];Rnd )-function.

Note that, for a given ϕ ∈ C2([0,T ];Rnd ) and small ε > 0, we
have the following asymptotic estimate

P
{∥∥x.− ϕ

∥∥ < ε
}
≈ κε exp

{
−
∫ T

0
L(t , ϕ, ϕ̇)dt

}
,

where L(t , ϕ, ϕ̇) = 1
2

∥∥M(t , ϕ)− ϕ̇
∥∥2

a−1 .

Moreover, such an asymptotic estimate justifies the definition of
most probable path that minimizes the functional∫ T

0 L(t , ϕ, ϕ̇)dt .
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. . .

Then, we the following result.

Proposition (6)

Assume M(t ,xt ) ∈ C2
b([0,T ]× Rnd ;Rnd ) and

σ(t ,xt ) ∈ C2
b([0,T ]× Rnd ;Rd×d ). Consider the following two

diffusion processes x̂t and x̃t with the same diffusion term
σ(t ,x) and whose drifts are

M(t ,x) and M(t ,x) + G a(t ,xt )Dx1 log h(t ,x),

respectively, where h(t ,x) is a strictly positive function and a
kernel of the operator

(
∂/∂t + Lt ,x

)
. Then, x̂t and x̃t have the

same extremal trajectories.



Further remarks
Is there any meaningful extension that can be included?

For example, we can include a state dependent term in the cost
functional

J(xu
t ,ut ) = E

∫ T

0

(
1
2
∥∥ut
∥∥2

a−1 + V (xu
t )

)
dt , V ≥ 0.

Then, if we take h(t ,xt ) in the kernel of the operator(
∂/∂t + Lt ,x − V

)
and q(s,y, t ,x) as the fundamental solution

of (∂/∂t)f + Lt ,xf − Vf = 0.

Remark

Observe that q(s,y, t ,x) is the transition kernel of the killed
diffusion process with killing rate V .


