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Introduction
Let x(t) be an R9-valued Markov process with a transition
kernel g(s,y;t,x),0<s<t<T.

Start with an initial density py(x), then the density at time T is
given by

pr(x) = / 4(0.y; T. x)poly)dy.

Suppose that we observe a different density 77(x) at time T.
Then, our assumption about the transition kernel of x(t) seems
wrong.

Then, the following question arises: What is the transition
kernel q(s, y; t, x) that is close, in some sense, to q(s, y; t, x)
and for which

rr(x) = / 4(0.y: T.x)po(y)dy.
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Remark

The above question is closely related to the problem of
assigning initial and final conditions to the Markov process x(t);
and such a problem has been well studied in the context of
reciprocal processes (e.g., Jamison (1974/75); Beurling
(1960)).
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Definition (1)

Let x(t), 0 < t < T, be a stochastic process defined on a
measure space (2,.#,P). For0 < s <t < T, define the
following o-algebras:

st = G{X(T)\S <7< t},
Bst = U{X(T)\T <sorrt> t}.

Then, we say that x(t) is a reciprocal process if
P{ANB|x(s),x(t)} = P{Alx(s), x(t) } P{B|x(s), x(t)}

forany0 <s<t<Tand Ac %, Be HBs.
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Under some technical assumptions, a reciprocal process
admits an intermediate density p(s, x; t,y; u, z2), i.e.,

q(s, x; t,y)q(t,y: u, 2)

p(s,x;t,y;u,z) = ,0<s<t<u<T,
which expresses the conditional density of x(f) given x(s) = x
and x(u) = z.

Remark

Suppose that we are given two probability measures 1o and pr
and a transition kernel q(s, y; t,x) for0 <s <t < T. Then, we
can construct a reciprocal process (with an intermediate
density p(s, x; t,y; u, z)) such that x(0) and x(T) are distributed
according to o and p 1, respectively.
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General observation:

Let q(s, y; t, x) be a transition kernel associated with the
following diffusion process x(t)

dx(t) = b(t,x(t))dt + o(t, x(t)dW(t), 0 <t < T.
Then, constructing reciprocal processes corresponds to a
change of measure on the path-space.

Important observation:
Consider the following controlled-diffusion process x“(t),
0<t<T

ax(t) = (b(t, x"(t)) + a(t, x“(t))u(t)) dt + o(t, x"(1)) dW(1),

where a(t, x¥(t)) = o (t, x4(t))o(t, x4(1)).

Suppose that we are given two probability measures g and pur.
Then, what is the admissible minimum energy control u* for
which xV"(t) evolves from g to p7?
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Remark

In this talk, our main purpose is to throw some light on the
structure of controlled-diffusion processes pertaining to a chain
of distributed systems.

At the same time, we also touch some related questions
concerning entropy minimization subject to an initial distribution
and a final attainable distribution for such controlled-diffusion
processes.



Preliminaries

Consider the following distributed system
dx] =mq(t,x},....xP)dt+o(t,x, ... . x[)dW(t)
ax? = my(t,x},....x")adt
dxd = mg(t,x2,.... xI")dt )
dx' = ma(t, X xP)dt, 0<t<T
where

» x' is an R%valued state for the ith subsystem, with

ie{1,2,...,n},
> the functions m : (0, c0) x R™ — R? and
m;: (0,00) x RO+ _, Rd for j = 2, ... nare uniformly

Lipschitz, with bounded first derivatives,
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» o: [0,00) x R™ — R9*9 s Lipschitz with the least
eigenvalue of o o7 uniformly bounded away from zero, i.e.,

o(t,xt, . XD o (tx0, o xP) > My, V(... x[) € R™,

for all for t > 0 and some X\ > 0,

» W (with W(0) = 0) is a d-dimensional standard Wiener
process.

Notation:
» we use bold face letters to denote variables in R,
» forany t > 0, the solution (x/, x2, ..., x") is denoted by x;,

> for (t,(X~",...,x")) € (0,00) x RN=+Dd j =2 n, the
function x/ — m;(t,x’=", ..., x") is continuously
differentiable w.r.t. x/ and its derivative denoted by
(t X1 x™) e Dgmy(E X1, ™).
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Then, we can write (1) as follow
ax; = M(l’, Xt)dt + GU(t,Xt)th, (2)

where M = [my, mo, ..., mj,] is an R™-valued function and
G=[l4,0,...,0] T stands for an (nd x d) matrix that embeds
RY into R™. Moreover, the infinitesimal generator associated
with (2) is given by

1 n -
ﬁt,x = —tr(a(t, X)D)2(1) + m1(t,x)DX1 + Zj:Z mj(t,xl*1)DX,-

2

where a(t,x) = o(t,x)o’ (t, X).
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Assumption (1)

(a) The functions my(t,x) and m(t, xI=1) forj=2,...,n satisfy
Hélder conditions with respect to x and x/— | respectively.
Moreover, a(t, x) is a bounded C* ([0, T] x R")-function;
a(t,x) and D,;a(t,x) are bounded and satisfy Hélder
conditions with respect to both x and t (e.g., Hérmander
(1967)).

(b) The infinitesimal generator L x is hypoelliptic.

Remark

The hypoellipticity assumption is related to a strong
accessibility property of controllable nonlinear systems that are
driven by white noise. Note that the hypoellipticity assumption
also implies that the diffusion process x; has a transition kernel
q(s,y, t,x) with a strong Feller property.
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Note that, from Assumption (1), the parabolic PDE

of +Lixf=0 in [0,T)xR™

ot ’

has a fundamental solution g(s,y, t, x) which is twice
continuously differentiable with respect to y and continuously
differentiable with respect to s.
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Moreover, for any positive measurable function g(x) such
that

q(0,x, T,2)g(z)dz < 00 forsome x e R™.
Rnd

Then, the function
h(t,x) = q(t,x, T,z)g(z)dz
Rnd

belongs C, ([0, T] x R™).

Remark

Note that the function h(t, x) is the kernel of the operator
(0/0t+ Lix), i.e., (0h/0t + Lixh) = 0.
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Remark

Note that a continuous change of measure on the path-space is
related to changing the drift of the diffusion process associated
with (2).

Then, we have the following results.
Proposition (1)

Suppose that x; is a weak solution of (2). Let the function
h(t,x) € CL2([0, T] x R™) be a strictly positive solution to
following

‘th’ +Lixh=0 in [0,T)xR™

such that E{ h(t,x)} < +oco and

h(s,x) =Esx{h(t,x)}, 0<s<t<T.
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Then, the following SDE

dxi = (M(t, x") + Ga(t,x!") D, log h(t, xf)) dt + Go(t,x!)dW;
admits a weak solution in [0, T) and, moreover, its transition
kernel is given by

q(s,y, t,x)h(t,x)
h(s,y)

qh(s7y’ t, X) =

Proof.

The proof involves introducing a martingale process
z(t) = h(t,x)/h(0,xp). Then, using change of measure
94 = z(T — ¢), with € > 0, we can show that

ES {100} = [ a'(s.x Ly)(y)ay < +oc

for any test function f € Cg°(R™). m
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Recall the following:

Definition (2)

Assume that ¢ and v are o-finite measures defined in the same
measure space. Then, the relative entropy of p w.rt. v is
defined by

d .
400 otherwise.
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Proposition (2)

Let 1o and ut be two probability measures on R™ and the
transition probability density q(s,y, t,X). Then, there exists a
unique pair of o-finite measures (1o, v7) on R™ such that the
measure 1. on R™ x R defined by

W(E) = /E 4(0.y. T, X)uo(dy)wr(dx)

has marginals ug and pr. Furthermore, vy < po and vy < ur
(i.e., they are mutually absolutely continuous measures).



Statement of the problem

Consider the following controlled-diffusion process
dxi{ = (M(t,x{) + Gu;)dt + Go(t, x{)dW;, (3)

where u; is an admissible control that satisfies
(i) uzis o{x}}-measurable;

(ii) (8) admits a weak solution in [0, T); and

2 A

(iii) EfOTHutHi_1dt < 400, where ||ug||5 ¢ £ Ha—1(t,x;’)u1H2.
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Assume that we are given two probability measures o and pr,
then we consider the following problem:

Problem (P)

Find an optimal admissible control u} such that

(1) x4 is distributed according to o, and x4 according i7;
and

(2) the optimal admissible control u; (among all admissible
controls satisfying condition (i)) minimizes the following cost
functional

T1 5
J(u) :IE/O Sl ot
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Assume that x; is a weak solution in [0, T] to the following
ax; = M(t,Xt)dt + GU(t,Xt)th, Xg =&,

where ¢ is distributed according to g, with E|¢[? < +oo.

Let S; be an operator, acting on the set of o-finite measures on
R defined by

dSt,u

2 (x,) = / 4(0.y. £ X)u(dy).

where dS;iu/d\ is the Radon-Nikodym derivative w.r.t. the
Lebesque measure \.



Main results - Connection with stochastic control
problems

In what follows, using the logarithmic transformations
approach from Fleming (e.g., Fleming (1978/782)), we provide
a condition on the existence of an optimal admissible control for
Problem (P).

Remark

The result mainly relies on the interpretation of log h(t,x) as a
value function for a stochastic control problem associated with
the distributed systems, which is amounted to changing the drift
term by a certain perturbation suggested by Jamison in the
context of reciprocal processes (cf. Proposition (2)).

Specifically, we consider the following conditions:
» with a deterministic initial condition; and

» with a random initial condition.
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First, consider Problem (P) with a deterministic initial condition,
i.e., when po assumes a Dirac measure that is concentrated at
a point £ € R™,

Proposition (3)

Suppose that 1 is a Dirac measure which is concentrated at a
point ¢ € R Further, assume that

H(pr|STHo) < 400

and let h(t,x) be given by

h(t, x) _/q(t,x, T,2)log dzﬁ;o (z)dz. (4)

Then, uy = a(t, x¢)D,1 log h(t, x;) solves Problem (P) with an
optimal value of

J(uy) = H(ut|STH0)-
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Remark

Note that the “energy” J(u;) ]Ef HutHi,1dt has an
interpretation in terms of the re/at/ve entropy.

Suppose that Py, and thu are measures generated by x; and x{
on the path-space C?([0, T]; R™). Then, using Girsanov
transformation, we have the following

H(PwlPy) = [ log 22X ap
( X;J| xt) og dPx X;l
t

T —1 u T 2
=K /O g (t,Xt)Utth—/o ZHU[Ha1dt}

= J(ut).
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Remark

Moreover, under the optimality condition, we have the
following

H(Pxy|Px,) = H(pr|ST10)

that implies the global relative entropy is exactly equal to the
relative entropy between the final densities.
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Assume that ¢ is distributed according to a measure pg. Note
that, from Proposition (2), for ug and pr (with 7 < Stpo),
there exist two o-finite measures vy and v+ such that

CZ‘)\T = pT(x)/q(O,y, T, X)vo(dy)
= 77(x)

and
d
o /qu T.2)pr(2)0z

where pT(X[) = dVT/dl/o.
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Then, for any initial random variable xo = ¢ distributed

according to v and satisfying E|¢[? < 400, we have the
following result which is a generalization of
Proposition (3).

Proposition (4)

Suppose that H(pt|Stro) < +oo, [(duo/dro)dpg < +oco. Let
h(t,x;) be given by

h(t,x;) = /q(t,x, T,2)pr(2)0z.

Then, ui = a(t, x¢)D,. log h(t, x¢) solves Problem (P) with an
optimal value of

. T2
J(Ut)—E/O §Hu1\||a,1dt

= H(urlSTr0) — H(polvo).-
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Remark

Note that the conditions under which Proposition (4) holds are
rather difficult to meet. However, when o has compact
support, we can replace them with suitable conditions.

Proposition (5)

Suppose that g has compact support and H(ur|Stpo) < +oo.
Then, we have

H(ur|ST10) < 400 and / duo < +00.



On the invariance property of path-space
measure

If x; is @ weak solution of (2) with M(t,x) € C2([0, T] x R"?; R™)
and o(t,x) € C2([0, T] x R";R9*%). Then, we can consider
determining an asymptotic estimate for the probability of a
small tube around C?([0, T]; R")-function.

Note that, for a given ¢ € C?([0, T]; R™) and small £ > 0, we
have the following asymptotic estimate

T
(- ol <o o [ Ltooa)

where L(t, ¢, ) = 5||M(t,¢) — S'DHE—"

Moreover, such an asymptotic estimate justifies the definition of
most probable path that minimizes the functional

fo (t, 0, ¢)dt.



On the invariance property of path-space measure

Then, we the following result.

Proposition (6)

Assume M(t,x;) € C2([0, T] x R"; R"™) and

o(t,x¢) € C2([0, T] x R"; RI*d). Consider the following two
diffusion processes X; and X; with the same diffusion term
o(t,x) and whose drifts are

M(t,x) and M(t,x)+ Ga(t,x;)D, log h(t,x),

respectively, where h(t, x) is a strictly positive function and a
kernel of the operator (0/0t + Lix). Then, X; and X; have the
same extremal trajectories.



Further remarks
Is there any meaningful extension that can be included?

For example, we can include a state dependent term in the cost
functional

)
J(xY, up) = E /0 (;HufH; + V(x?)) dt, Vo

Then, if we take h(t, X;) in the kernel of the operator
(0/0t+ Lix — V) and q(s,y, t,x) as the fundamental solution
of (9/01)f + Lyxf — Vi = 0.

Remark

Observe that q(s,y, t, X) is the transition kernel of the killed
diffusion process with killing rate V.



