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Consider stochastic optimization problem:

Min
x∈X

{
f(x) := EP [F (x, ξ)]

}
, (1)

where ξ is a random vector having probability distribution P , and

F (x, ξ) is a real valued function. Assume that the expectation

f(x) is well defined and finite valued for every x ∈ X .

Let P̂N be an empirical estimate of P , based on a sample of size

N , and suppose that problem (1) is approximated by

Min
x∈X

{
f̂N(x) := EP̂N [F (x, ξ)]

}
. (2)

Let ϑN and x̂N be the corresponding optimal value and an op-

timal solution of the approximating problem (2). What are sta-

tistical properties of ϑN and x̂N?
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Examples
Maximum Likelihood method.
Let X1, ..., XN be an iid sample of realization of random vector
X ∼ P . Consider a parametric family with pdf f(x, θ), θ ∈ Θ,
and the likelihood function LN(θ) =

∏N
i=1 f(Xi, θ). We have that

N−1 logLN(θ) = N−1
N∑
i=1

log f(Xi, θ) = EP̂N [log f(X, θ)],

where P̂N = N−1∑N
i=1 δ(Xi). By the Law of Large Numbers we

have that N−1 logLN(θ) converges w.p.1 to EP [log f(X, θ)].
The ML problem

Max
θ∈Θ

N−1 logLN(θ)

can be considered as an empirical approximation of the problem

Max
θ∈Θ

EP [log f(X, θ)].

2



Sample Average Approximation (SAA) method.

Consider ‘true’ stochastic programming problem (1). Let ξ1, ..., ξN

be an iid sample of random vector ξ, say generated by Monte
Carlo method. The corresponding problem

Min
x∈X

{
f̂N(x) := N−1

N∑
j=1

F (x, ξj)
}

is considered as an approximation of the true problem.

Two-stage (linear) stochastic programming problem with re-
course, F (x, ξ) := cTx + Q(x, ξ), where X := {x : Ax = b, x ≥ 0}
and Q(x, ξ) is the optimal value of the second stage problem

Miny qTy s.t. Tx+Wy = h, y ≥ 0,

with ξ = (q, T,W, h).
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Nested formulation the linear multistage stochastic program

min
A1x1=b1
x1≥0

cT1x1+E|ξ1

 min
B2x1+A2x2=b2

x2≥0

cT2x2 + · · ·+ E|ξ[T−1]

[
min

BTxT−1+ATxT=bT
xT≥0

cTTxT

] .
Equivalent formulation

min
x1,x2(·),...,xT (·)

E
[
cT1x1 + cT2x2(ξ[2])...+ cTTxT (ξ[T ])

]
s.t. A1x1 = b1, x1 ≥ 0,

Btxt−1(ξ[t−1]) +Atxt(ξ[t]) = bt,

xt(ξ[t]) ≥ 0, t = 2, ..., T.

Here ξt = (ct, Bt, At, bt), t = 2, ..., T, is considered as a ran-

dom process, ξ1 = (c1, A1, b1) is supposed to be known, ξ[t] :=

(ξ1, ..., ξt) denotes history of the data process up to time t.
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Optimization is performed over feasible policies (also called de-

cision rules). A policy is a sequence of (measurable) functions

xt = xt(ξ[t]), t = 1, ..., T . Each xt(ξ[t]) is a function of the data

process up to time t, this ensures the nonanticipative property

of a considered policy. The constraints should be satisfied for

almost every realization of the random data process.

Suppose that the random process ξt is stagewise independent,

i.e., ξt+1 is independent of ξ[t], t = 1, ..., T − 1. An SAA problem

is constructed by generating independent samples from marginal

distributions of ξt of respective sample sizes Nt, t = 2, ..., T . Note

that the total number of scenarios (sample paths) of the obtained

scenario tree is
∏T
t=2Nt.
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Risk measures

Let (Ω,F , P ) be a probability space and Z = Lp(Ω,F , P ), p ∈
[1,∞), be the linear space of random variables (measurable func-

tions) Z : Ω → R having finite p-th order moments. Functional

ρ : Z → R is said to be a coherent risk measure if it satisfies the

following axioms (Artzner, Delbaen, Eber, Heath (1999)):

(A1) Convexity: ρ(αZ1 + (1− α)Z2) ≤ αρ(Z1) + (1− α)ρ(Z2) for

all Z1, Z2 ∈ Z and α ∈ [0,1].

(A2) Monotonicity: If Z1, Z2 ∈ Z and Z2 ≥ Z1, then

ρ(Z2) ≥ ρ(Z1).

(A3) Translation Equivariance: If a ∈ R and Z ∈ Z, then

ρ(Z + a) = ρ(Z) + a.

(A4) Positive Homogeneity: ρ(αZ) = αρ(Z), Z ∈ Z, α ≥ 0.
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It is said that risk measure ρ : Z → R is law invariant if Z1, Z2 ∈
Z and Z1

D∼ Z2 implies that ρ(Z1) = ρ(Z2). The notation

Z1
D∼ Z2 means that Z1 and Z2 are distributionally equivalent, i.e.,

P (Z1 ≤ z) = P (Z2 ≤ z) for all z ∈ R. If ρ is law invariant, then
it can be considered as a function of the cdf G(z) = P (Z ≤ z).
Let ĜN(z) = N−1∑N

i=1 1l(Zi ≤ z) be the empirical cdf based on
sample Z1, ..., ZN . Then ρ(G) can be estimated by ρ(ĜN).

Average Value-at-Risk measure, for α ∈ (0,1),

AVaRα(G) =
1

1− α

∫ 1

α
G−1(t)dt = inf

t∈R

{
t+ (1− α)−1EG[Z − t]+

}
.

Its empirical estimate

AVaRα(ĜN) = inf
t∈R

t+
1

N(1− α)

N∑
i=1

[Zi − t]+

 .
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Any law invariant coherent risk measure ρ : Z → R can be written

in the following form (the so called Kusuoka representation)

ρ(G) = sup
µ∈M

∫ 1

0
AVaRα(G)dµ(α),

where M is a set of probability measures on the interval [0,1).

Consequently ρ can be represented in the following minimax form

ρ(G) = sup
µ∈M

∫ 1

0
inf
t∈R

{∫ +∞

−∞
hα(z, t)dG(z)

}
dµ(α)

= sup
µ∈M

inf
τ(·)∈Lp

∫ 1

0

∫ +∞

−∞
hα(z, τ(α))dG(z)dµ(α),

where

hα(z, t) := t+ (1− α)−1[z − t]+.
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Consistency

Under what conditions the empirical estimates ϑN and x̂N con-
verge as N → ∞ (say w.p.1) to their true counterparts? That
is, whether ϑN → ϑ0 and dist(x̂N ,S0)→ 0 w.p.1, where ϑ0 is the
optimal value and S0 is the set of optimal solutions of the true
problem.

Uniform Laws of Large Numbers

Theorem 1 (convex case) Suppose that the set X ⊂ Rn is
compact, the function F (x, ξ) is convex in x ∈ Rn, the expected
value function f(x) is finite valued on a neighborhood V of X
and f̂N(x) converges w.p.1 to f(x) for every x ∈ V. Then

sup
x∈X

∣∣∣f̂N(x)− f(x)
∣∣∣→ 0 w.p.1 as N →∞.
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Theorem 2 Suppose that: (i) X is a compact metric space, (ii)
for any x ∈ X the function F (·, ξ) is continuous at x for a.e. ξ,
(iii) supx∈X |F (x, ξ)| ≤ g(ξ) with E|g(ξ)| < ∞, (iv) the sample is
iid. Then the expected value function f(x) is finite valued and
continuous on X , and supx∈X

∣∣∣f̂N(x)− f(x)
∣∣∣→ 0 w.p.1.

Epiconvergence
Consider a sequence fk : Rn → R of extended real valued func-
tions. It is said that fk epiconverge to a function f , written
fk

e→ f , if for any x ∈ Rn the following two conditions hold:
(i) for any sequence xk converging to x one has

lim inf
k→∞

fk(xk) ≥ f(x),

(ii) there exists a sequence xk converging to x such that

lim sup
k→∞

fk(xk) ≤ f(x).
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Let ρ : Z → R, Z = Lp(Ω,F , P ), p ∈ [1,∞), be a law invariant,

convex risk measure (i.e., satisfies axioms of Convexity, Mono-

tonicity and Translation Equivariance), and Fx(ω) = F (x, ξ(ω)).

Suppose that for every x ∈ Rn the random variable Fx ∈ Z. Then

we can consider the composite function φ(x) := ρ(Fx). Let ĜxN
be empirical cdf associated with Y

j
x = F (x, ξj), j = 1, ..., N , and

iid sample ξ1, ..., ξN . Then φ̂N(x) := ρ(ĜxN) gives an estimate of

φ(x).

Theorem 3 Suppose that:(i) Fx ∈ Z for every x ∈ Rn, (ii) the

function F (x, ω) = Fx(ω) is random lower semicontinuous, (iii)

for every x̄ ∈ Rn there is a neighborhood Vx̄ of x̄ and a function

h ∈ Z such that F (x, ·) ≥ h(·) for all x ∈ Vx̄. Then the functions

φ is lower semicontinuous and φ̂N
e→ φ w.p.1.
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Central Limit Theorem type results. Notoriously slow con-
vergence of order Op(N−1/2). By the CLT, for a given x ∈ X ,

N1/2
[
f̂N(x)− f(x)

] D→ N (0, σ2(x)),

where σ2(x) := Var[F (x, ξ)].
Delta method
Let YN ∈ Rd be a sequence of random vectors, converging in
probability to a vector µ ∈ Rd. Suppose that there exists a
sequence τN → +∞ such that τN(YN −µ)

D→ Y . Let G : Rd → Rm
be a vector valued function, differentiable at µ, and M := ∇G(µ)

be the m× d Jacobian matrix. Then τN [G(YN)−G(µ)]
D→MY .

In particular, suppose that N1/2(YN − µ) converges in distribu-
tion to a (multivariate) normal distribution N (0,Σ) with zero
mean vector and covariance matrix Σ. Then it follows that
N1/2 [G(YN)−G(µ)]

D→ N (0,MΣMT).
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Infinite dimensional Delta Theorem

Let B1 and B2 be two Banach spaces, K be a closed subset of

B1 and G : K → B2. It is said that G is Hadamard directionally

differentiable at µ ∈ K tangentially to K if for any d ∈ TK(µ) the

following limit exists

G′µ(d) = lim
t↓0

d′→
K
d

G(µ+ td′)−G(µ)

t
.

The notation d′ →
K
d means that K 3 d′ → d. The contingent

cone TK(µ) consists of the limits of sequences

(yn − µ)/tn, where yn ∈ K and tn ↓ 0. In particular if the set

K is convex, then TK(µ) is the tangent cone to K at µ.
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Theorem 4 (Delta Theorem) Let B1 and B2 be Banach spaces,
equipped with their Borel σ-algebras, K be a closed subset of B1,
G : K → B2, τN be a sequence of positive numbers tending to
infinity as N →∞, and YN be a sequence of random elements of
B1 such that YN ∈ K w.p.1. Suppose that the set K is separable,
the mapping G is Hadamard directionally differentiable at a point
µ ∈ K tangentially to K, and the sequence XN := τN(YN − µ)
converges in distribution to a random element Y of B1. Then

τN [G(YN)−G(µ)]
D→ G′µ(Y ).

Moreover if the set K is convex, then

τN [G(YN)−G(µ)] = G′µ(XN) + op(1),

or equivalently

G(YN) = G(µ) +G′µ(YN − µ) + op(τ
−1
N ).
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Second order Delta Theorem

Suppose further that the set K is convex and second order

Hadamard directional derivative tangentially to K exists for all

d ∈ TK(µ):

G
′′
µ(d) = lim

t↓0
d′→

K
d

G(µ+ td′)−G(µ)− tG′µ(d′)
1
2
t2

.

Then

τ2
N

[
G(YN)−G(µ)−G′µ(YN − µ)

] D→ 1
2
G
′′
µ(Y ).

and

G(YN) = G(µ) +G′µ(YN − µ) + 1
2
G
′′
µ(YN − µ) + op(τ

−2
N ).
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Asymptotics of the SAA problems. Let X be a nonempty com-
pact subset of Rn and consider the space B = C(X ) of continuous
functions ψ : X → R. Assume that:
(A1) For some point x ∈ X the expectation E[F (x, ξ)2] is finite.
(A2) There exists a measurable function C(ξ) such that E[C(ξ)2]
is finite and ∣∣∣F (x, ξ)− F (x′, ξ)

∣∣∣ ≤ C(ξ)‖x− x′‖,
for all x, x′ ∈ X and a.e. ξ.

We can view YN := f̂N as a random element of C(X ). Consider
the min-function V : B → R defined as V (Y ) := infx∈X Y (x).
Clearly ϑ̂N = V (YN). It is possible to show that for any µ ∈ C(X )
and X ∗(µ) := arg minx∈X µ(x),

V ′µ(δ) = inf
x∈X ∗(µ)

δ(x), ∀δ ∈ C(X ),

and the above directional derivative holds in the Hadamard sense.
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By a functional CLT, under assumptions (A1) and (A2),
N1/2(f̂N − f) converges in distribution to a random element Y
of C(X ). For any finite set {x1, ..., xm} ⊂ X , the random vec-
tor (Y (x1), ..., Y (xm)) has a multivariate normal distribution with
zero mean and the same covariance matrix as the covariance
matrix of (F (x1, ξ), ..., F (xm, ξ)). In particular, for fixed x ∈ X ,
Y (x) ∼ N(0, σ2(x)) with σ2(x) := Var[F (x, ξ)].

Theorem 5 Suppose that the set X ⊂ Rn is compact, and as-
sumptions (A1) and (A2) hold. Then

ϑ̂N = min
x∈S0

f̂N(x) + op(N−1/2),

N1/2[ϑ̂N − ϑ0]
D→ infx∈S0

Y (x).

In particular, if the optimal set (of the true problem) S0 = {x0}
is a singleton, then

N1/2[ϑ̂N − ϑ0]
D→ N (0, σ2(x0)).
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Second order asymptotics. Consider second order directional

derivative of the optimal value function V (Y ) = infx∈X Y (x):

V ′′µ (d) := lim
t↓0
d′→d

V (µ+ td′)− V (µ)− tV ′µ(d′)
1
2
t2

.

If S0 = {x0}, then under certain regularity conditions

V ′′µ (δ) = inf
h∈C(x0)

{
2hT∇δ(x0)+hT∇2f(x0)h−s(−∇f(x0), T2

X (x0, h))
}
,

where s(y,A) = supz∈A y
Tz is the support function of set A,

C(x0) =
{
h ∈ TX (x0) : hT∇f(x0) = 0

}
is the critical cone, TX (x0) is the tangent cone to X at x0, and

T2
X (x, h) =

{
z : dist(x+ th+ 1

2
t2z,X ) = o(t2), t ≥ 0

}
is the second order tangent set.
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Suppose that N1/2(f̂N − f) converges in distribution to a ran-

dom element Y (in a functional space of Lipschitz continuous

functions) and regularity conditions hold (in particular, the true

problem has unique optimal solution x0). Then

ϑ̂N = f̂N(x0) + 1
2
V ′′f (f̂N − f) + op(N

−1)

N
[
ϑ̂N − f̂N(x0)

] D→ 1
2
V ′′f (Y ).

Moreover, if for all δ the optimization problem in the calculation

of V ′′f (δ) has unique optimal solution h̄ = h̄(δ), then

N1/2(x̂N − x0)
D→ h̄(Y ).
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Bias of the optimal value ϑ̂N of the SAA problem.

For any fixed x ∈ X , E
[
f̂N(x)

]
= f(x), i.e., f̂N(x) is an unbiased

estimator of f(x) = E[F (x, ξ)]. However,

E
[
ϑ̂N

]
= E

[
min
x∈X

f̂N(x)
]
≤ E

[
f̂N(x)

]
, ∀x ∈ X ,

and hence E
[
ϑ̂N

]
≤ ϑ0 = minx∈X f(x).

If S0 = {x0}, then (under some regularity conditions)

E
[
ϑ̂N

]
− ϑ0 = 1

2
N−1E[V ′′f (Y )] + o(N−1),

and hence the (negative) bias E
[
ϑ̂N

]
− ϑ0 is of order O(N−1). If

S0 is “large”, then

E
[
ϑ̂N

]
− ϑ0 = N−1/2E

[
inf
x∈S0

Y (x)

]
+ o(N−1/2),

and the bias is of order O(N−1/2).
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Example (Average Value-at-Risk)

Sample estimate of θ = AVaRα(Z) is obtained by replacing the

expectation E[Z − t]+ with the corresponding sample average,

that is

θ̂N = inf
t∈R

t+
1

N(1− α)

N∑
i=1

[Zi − t]+

 .
By the above theorem (assuming E|Z|2 <∞) we have

θ̂N = inf
t∈[ t,t ]

t+
1

N(1− α)

N∑
i=1

[Zi − t]+

+ op(N
−1/2),

where t is the left side and t is the right side α-quantiles of the dis-

tribution of Z. In particular, if t = t, then N1/2(θ̂N−θ) converges

in distribution to normal N (0, σ2) with

σ2 = (1− α)−2Var([Z − t ]+).
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Second order expansion of the Average Value-at-Risk
Suppose that cdf G(·) of Z has unique α-quantile t = G−1(α).
Suppose further that G(·) is continuous at t and has positive
density g(t) = dG(t)/dt at t = t. Then

θ̂N − f̂N(t) = N−1 inf
τ∈R

{
τV + 1

2
τ2f ′′(t)

}
+ op(N

−1)

= −
(1− α)V 2

2Ng(t)
+ op(N

−1),

where V ∼ N (0, γ2) with

γ2 := Var

(
(1− α)−1∂[Z − t]+

∂t

)
=
G(t)(1−G(t))

(1− α)2
=

α

1− α
.

Consequently, under appropriate regularity conditions,

N
[
θ̂N − f̂N(t)

] D→ − [ α
2g(t)

]
χ2

1,

E[θ̂N ]− θ = − α
2Ng(t)

+ o(N−1).
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Minimax stochastic programs

Min
x∈X

sup
y∈Y

{
f(x, y) := E[F (x, y, ξ)]

}
,

where X ⊂ Rn and Y ⊂ Rm are closed sets, F : X × Y × Ξ → R
and ξ = ξ(ω) is a random vector whose probability distribution

is supported on set Ξ ⊂ Rd. The corresponding SAA problem

is obtained by using the sample average as an approximation of

the expectation f(x, y), that is

Min
x∈X

sup
y∈Y

f̂N(x, y) :=
1

N

N∑
j=1

F (x, y, ξj)

 .
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Suppose that: (i) the sets X and Y are nonempty, convex and

compact, (ii) the function F (x, y, ξ) is convex in x ∈ X and con-

cave in y ∈ Y, (iii) F (x, y, ξ) is dominated by an integrable func-

tion, (iv) for some (x, y) ∈ X × Y , E[F (x, y, ξ)2] <∞, (v) there is

C : Ξ→ R+ such that for all x, x′ ∈ X , y, y′ ∈ Y and a.e. ξ,

|F (x, y, ξ)− F (x′, y′, ξ)| ≤ C(ξ)(‖x− x′‖+ ‖y − y′‖).

Then

ϑ̂N = inf
x∈SX

sup
y∈SY

f̂N(x, y) + op(N
1/2),

where SX and SY are the respective sets of optimal solutions.

Moreover, if SX = {x0} and SY = {y0} (i.e., (x0, y0) is the unique

saddle point od the true problem), then N1/2(ϑ̂N−ϑ0) converges

in distribution to normal N (0, σ2) with σ2 = Var[F (x0, y0, ξ)].

24



Sample size estimates (by Large Deviations type bounds)
Consider an iid sequence Y1, . . . , YN of replications of a real val-
ued random variable Y , and let ZN := N−1∑N

i=1 Yi be the cor-
responding sample average. Then for any real numbers a and
t > 0 we have that Prob(ZN ≥ a) = Prob(etZN ≥ eta), and hence,
by Markov inequality

Prob(ZN ≥ a) ≤ e−taE[etZN ] = e−ta[M(t/N)]N ,

where M(t) := E[etY ] is the moment generating function of Y .
Suppose that Y has finite mean µ := E[Y ] and let a ≥ µ. By tak-
ing the logarithm of both sides of the above inequality, changing
variables t′ = t/N and minimizing over t′ > 0, we obtain

1

N
log

[
Prob(ZN ≥ a)

]
≤ −I(a), (3)

where I(z) := supt∈R {tz − Λ(t)} is the conjugate of the logarith-
mic moment generating function Λ(t) := logM(t).
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Suppose that |X | <∞, i.e., the set X is finite. Let Sε be the set
of ε-optimal solutions of the true problem and ŜδN be the set of
δ-optimal solutions of the corresponding SAA problem. Suppose
that: (i) for every x ∈ X the expected value f(x) = E[F (x, ξ)] is
finite, (ii) there are constants σ > 0 and a ∈ (0,+∞] such that

Mx(t) ≤ exp{σ2t2/2}, ∀t ∈ [−a, a], ∀x ∈ X \ Sε,
where Mx(t) is the moment generating function of the random
variable F (u(x), ξ)−F (x, ξ)−E[F (u(x), ξ)−F (x, ξ)] and u(x) is a
point of the optimal set S0. Choose ε > 0, δ ≥ 0 and α ∈ (0,1)
such that 0 < ε− δ ≤ aσ2. Then for sample size

N ≥
2σ2

(ε− δ)2
log

(
|X |
α

)
we are guaranteed, with probability at least 1 − α, that any δ-
optimal solution of the SAA problem is an ε-optimal solution of
the true problem, i.e., Prob(ŜδN ⊂ Sε) ≥ 1− α.
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Let X = {x1, x2} with f(x2) − f(x1) > ε > 0 and suppose that

random variable F (x2, ξ) − F (x1, ξ) has normal distribution with

mean µ = f(x2) − f(x1) and variance σ2. By solving the corre-

sponding SAA problem we make the correct decision (that x1 is

the minimizer) if f̂N(x2) − f̂N(x1) > 0. Probability of this event

is Φ(µ
√
N/σ). Therefore we need the sample size N > z2

ασ
2/ε2

in order for our decision to be correct with probability at least

1− α.

In order to solve the corresponding optimization problem we need

to test H0 : µ ≤ 0 versus Ha : µ > 0. Assuming that σ2 is known,

by Neyman-Pearson Lemma, the uniformly most powerful test is:

“reject H0 if f̂N(x2) − f̂N(x1) is bigger than a specified critical

value”.
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Now let X ⊂ Rn be a set of finite diameter D := supx′,x∈X ‖x′−x‖.
Suppose that: (i) for every x ∈ X the expected value f(x) =
E[F (x, ξ)] is finite, (ii) there is a constant σ > 0 such that

Mx′,x(t) ≤ exp{σ2t2/2}, ∀t ∈ R, ∀x′, x ∈ X ,

where Mx′,x(t) is the moment generating function of the random
variable F (x′, ξ) − F (x, ξ) − E[F (x′, ξ) − F (x, ξ)], (iii) there exists
κ : Ξ → R+ such that its moment generating function is finite
valued in a neighborhood of zero (with L = E[κ(ξ)]) and∣∣∣F (x′, ξ)− F (x, ξ)

∣∣∣ ≤ κ(ξ)‖x′ − x‖, ∀ξ ∈ Ξ, ∀x′, x ∈ X .

Choose ε > 0, δ ∈ [0, ε) and α ∈ (0,1). Then for sample size

N ≥
8σ2

(ε− δ)2

[
n log

(
O(1)DL

(ε− δ)2

)
+ log

(
2

α

)]∨[
β−1 log

(
2

α

)]
,

we are guaranteed that Prob
(
ŜδN ⊂ Sε

)
≥ 1− α.
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In particular, if κ(ξ) ≡ L, then the estimate takes the form

N ≥ O(1)
(
LD

ε− δ

)2
[
n log

(
O(1)DL

ε− δ

)
+ log

(
1

α

)]
.

Suppose further that for some c > 0, γ ≥ 1 and ε̄ > ε the following
growth condition holds

f(x) ≥ ϑ∗+ c[dist(x,S0)]γ, ∀x ∈ Sε̄,
and that the problem is convex. Then, for δ ∈ [0, ε/2], we have
the following estimate of the required sample size:

N ≥
(

O(1)LD

c1/γε(γ−1)γ

)2 [
n log

(
O(1)D̄L

ε

)
+ log

(
1

α

)]
,

where D̄ is the diameter of Sε̄. In particular, if S0 = {x0} is a
singleton and γ = 1, we have the estimate (independent of ε):

N ≥ O(1)c−2L2
[
n log(O(1)c−1L) + log(α−1)

]
.
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Sample complexity of multistage stochastic programming

Conditional sampling. Let ξi2, i = 1, ..., N1, be an iid ran-

dom sample of ξ2. Conditional on ξ2 = ξi2, a random sample

ξ
ij
3 , j = 1, ..., N2, is generated and etc. The obtained scenario

tree is considered as a sample approximation of the true prob-

lem. Note that the total number of scenarios N =
∏T−1
t=1 Nt and

each scenario in the generated tree is considered with the same

probability 1/N . Note also that in the case of stagewise in-

dependence of the corresponding random process, we have two

possible strategies. We can generate a different (independent)

sample ξ
ij
3 , j = 1, ..., N2, for every generated node ξi2, or we can

use the same sample ξj3, j = 1, ..., N2, for every ξi2. In the second

case we preserve the stagewise independence condition for the

generated scenario tree.
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For T = 3, under certain regularity conditions, for ε > 0 and

α ∈ (0,1), and the sample sizes N1 and N2 satisfying

O(1)
[(
D1L1
ε

)n1
exp

{
− O(1)N1ε

2

σ2
1

}
+
(
D2L2
ε

)n2
exp

{
−O(1)N2ε

2

σ2
2

} ]
≤ α,

we have that any first-stage ε/2-optimal solution of the SAA

problem is an ε-optimal first-stage solution of the true problem

with probability at least 1 − α. (Here D1, D2, L1, L2, σ1, σ2 are

certain analogues of similar constants in the sample size estimate

of two stage problem.)
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In particular, suppose that N1 = N2 and take L := max{L1, L2},
D := max{D1, D2}, σ2 := max{σ2

1, σ
2
2} and n := max{n1, n2}.

Then the required sample size N1 = N2:

N1 ≥
O(1)σ2

ε2

[
n log

(
O(1)DL

ε

)
+ log

(
1

α

)]
,

with total number of scenarios N = N2
1 .

That is, the total number of scenarios needed to solve a T -

stage stochastic program with a reasonable accuracy by the

SAA method grows exponentially with increase of the number

of stages T . Another way of putting this is that the number

of scenarios needed to solve T -stage problem would grow as

O
(
ε−2(T−1)

)
with decrease of the error level ε > 0.
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