
Risk-averse optimization via multivariate
stochastic order constraints

Darinka Dentcheva

Stevens Institute of Technology Hoboken, New Jersey, USA

Research supported by NSF award DMS-1311978
November 9, 2015

Workshop on Risk Management, University of Florida



Outline

1 Stochastic orders

2 Stochastic dominance and increasing convex order

3 Multivariate Orders

4 Optimality conditions and duality
Relation to von Neumann utility theory
Relation to rank dependent utility

5 Numerical methods
Shortfall approximation method
Dual Approach

Darinka Dentcheva Multivariate order constraints



Motivation

Risk-Averse Optimization Models

Choose a decision z ∈ Z , which results in a random outcome
G(z) ∈ Lp(Ω,F ,P) with “good" characteristics; special attention to
low probability-high impact events.

I Utility models apply a nonlinear transformation to the realizations
of G(z) (expected utility) or to the probability of events (rank
dependent utility/distortion). Expected utility models optimize
E[u(G(z))]

I Probabilistic / chance constraints impose prescribed probability
on some events: P[G(z) ≥ η]

I Mean–risk models optimize a composite objective of the
expected performance and a scalar measure of undesirable
realizations E[G(z)]− %[G(z)] (risk/ deviation measures)

I Stochastic-order constraints compare random outcomes using
stochastic orders and random benchmarks
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Integral Univariate Stochastic Orders

For X ,Y ∈ L1(Ω,F ,P)

X �U Y ⇔
∫
Ω

u(X (ω)) P(dω) ≥
∫
Ω

u(Y (ω)) P(dω) ∀ u(·) ∈ U

Collection of functions U is the generator of the order.

Generators:
I U1 =

{
nondecreasing functions u : R→ R

}
generates the usual

stochastic order or first order stochastic dominance (X �(1) Y )
Mann and Whitney (1947), Blackwell (1953), Lehmann (1955)

I U2 =
{

nondecreasing concave u : R→ R
}

generates the second
order stochastic dominance relation (X �(2) Y )
Quirk and Saposnik (1962), Fishburn (1964), Hadar and Russell (1969)

I Ū2 =
{

nondecreasing convex u : R→ R
}

generates the
increasing convex order (X �ic Y )
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First Order Stochastic Dominance
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Distribution function F (X ; η) =

∫ η

−∞
PX (dt) = P{X ≤ η}, η ∈ R

Quantile function F (−1)(X ; p) = inf{η : F (X ; η) ≥ p}, p ∈ (0,1)

Survival function F̄ (X ; η) = 1− F (X ; η) = P{X > η}, η ∈ R

The usual stochastic order

X �
(1) Y ⇔ F (X ; η) ≤ F (Y ; η) for all η ∈ R

⇔ F (−1)(X ; p) ≥ F (−1)(Y ; p) for all 0 < p < 1.

⇔ F̄ (X ; η) ≥ F̄ (Y ; η) for all η ∈ R.
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Second-Order Stochastic Dominance

Shortfall function F (2)(X , η) =
∫ η
−∞ F (X , t) dt = E[(η − X )+] η ∈ R.

Lorenz function: F (−2)(X ; p) =
∫ p

0 F (−1)(X ; t) dt p ∈ (0,1].
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Fenchel conjugate function F ∗(p) = sup
u
{pu − F (u)}.

Ogryczak-Ruszczyński 2002

F (−2)(X ; ·) = [F (2)(X ; ·)]∗ and F (2)(X ; ·) = [F (−2)(X ; ·)]∗
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Second-Order Stochastic Dominance

X �(2) Y ⇔ E[(η − X )+] ≤ E[(η − Y )+]

⇔ F (−2)(X ; p) ≥ F (−2)(Y ; p) ∀p ∈ [0,1].
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Increasing convex order

Characterization by the integrated survival function

For X ,Y ∈ L1, the relation X �ic Y holds if and only if∫ ∞
η

P(X > t) dt ≤
∫ ∞
η

P(Y > t) dt for all η ∈ R.

The excess function and its Fenchel conjugate

H(Z , η) =

∫ ∞
η

F (Z , t) dt = E(Z − η)+

L(Z ,q) = −
∫ 1

1+q
F (−1)(Z , t) dt for − 1 ≤ q < 0,

L(Z ,0) = 0, L(Z ,q) =∞ for q 6∈ [−1,0]

Increasing convex order vs. Second order dominance

X �ic Y ⇔ −X �(2) −Y .
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Multivariate Orders

Consider X = (X1, . . . ,Xm) and Y = (Y1, . . . ,Ym) in Lm
1 (Ω,F ,P).

Definition
Given a closed convex set C ∈ Rm

+ and a mapping M : c 7→ Uc , c ∈ C,
where Uc are univariate generators, a random vector X ∈ Lm

1 is
stochastically larger than a random vector Y ∈ Lm

1 with respect to M
and C if

c>X �Uc c>Y for all c ∈ C.

Example

I Set M(c) ⊂ R and S = {c ∈ Rm
+ : ‖c‖1 = 1}. For X ,Y ∈ Lm

1 ,

X �M
(2) Y ⇔ E[(c>X − η)+] ≤ E[(c>Y − η)+] ∀(c, η) ∈ graphM.

I If M(c) = [a,b], the order is known as linear second order
dominance.

Other definitions: A. Müller, D. Stoyan, Homem-de-Mello and Mehrotra: linear
dominance with C a polyhedron, or a compact convex set.
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Multivariate Stochastic Dominance: Generator of the order

The set Ψ(M) contains all mappings φ : c ∈ C 7→ U2
(
M(c)

)
such that

(c, x)→ [φ(c)](c>x) is Lebesgue measurable on C × Rm.

M(C) is the space of regular countably additive measures on C with
finite variation;M+(C) is its subset of nonnegative measures.

With every mapping φ ∈ Ψ(M) and every finite measure µ ∈M+(C)
we associate a function ϕφ,µ : Rm → R as follows:

ϕφ,µ(x) =

∫
C

[φ(c)](c>x)µ(dc).

Define Um
M = {ϕφ,µ : φ ∈ Ψ(M), µ ∈M+(C)}.

Theorem

For each X ,Y ∈ Lm
1 the relation X �M

(2) Y is equivalent to

E[ϕ(X )] ≥ E[ϕ(Y )] for all ϕ ∈ Um
M.

Moreover, Um
M is the maximal generator of the order �M

(2) .
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Rank Dependent Utility Functions/Distortions

W1 = {w : [0, 1]→ R : w is continuous nondecreasing}.
W2 = {w ∈ W1 : w concave subdifferentiable at 0}.

Theorem [DD, A. Ruszczyński, 2006]

For all random variables X ,Y ∈ L1, the relation X �(i) Y , i = 1, 2 holds if and
only if for all w ∈ Wi∫ 1

0
F (−1)(X ; p) dw(p) ≥

∫ 1

0
F (−1)(Y ; p) dw(p). (1)

Corollary: X �ic Y ⇔ (1) for all convex functions w .

Let M− : C ⇒ (0, 1) have closed convex images.

Multivariate distortions

For X ,Y ∈ Lm
1 , the relation X �(i) Y , i = 1, 2 holds if and only if for all

measurable ϑ : c ∈ C →Wi (M
−(c)) and all µ ∈M+(C)

∫
C

1∫
0

F (−1)(c>X ; p) dϑc(p) dµ(c) ≥
∫
C

1∫
0

F (−1)(c>Y ; p) dϑc(p) dµ(c) (2)

Quiggin (1982), Schmeidler (1986–89), Yaari (1987)Darinka Dentcheva Multivariate order constraints



Dominance Relation as Constraints in Optimization

min f (z)

subject to Gi (z) �U(i) Yi , i = 1..m
z ∈ Z

Yi - benchmark random outcome

The dominance constraints reflect risk aversion

Gi (z) is preferred over Yi by all risk-averse decision makers with
utility functions in the generator U(i).

G(z) �(1) Y ≡ continuum of chance constraints;
G(z) �(2) Y ≡ continuum of AV@R constraints.

Introduced by Dentcheva and Ruszczyński (2003)
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Second Order Dominance Constraints

Given Y ∈ Lm
1 - benchmark random vector

Let M : C ⇒ R and M− : C ⇒ (0, 1) have compact convex images.

Direct Stochastic Order Constraints

(P) min f (z)

s. t. E[(η − c>G(z))+] ≤ E[(η − c>Y )+]

∀ (c, η) ∈ graphM,

z ∈ Z .

Inverse Stochastic Order Constraints

(Q) min f (z)

s. t. F (−2)(c>G(z); p) ≥ F (−2)(c>Y ; p)

∀ (c, p) ∈ graphM−,

z ∈ Z .

Z is a closed subset of a Banach space Z; M(c), resp. M−(c) are compact,
G : Z → Lm

1 is continuous and for P-almost all ω ∈ Ω the functions [Gi (·)](ω)

are concave and continuous. f : Z → R is convex and continuous.
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Optimality Conditions Using von Neumann Utility Functions

The Lagrangian-like functional L : Z × Um
M → R

L(z,u) = f (z) + E
[
u(Y )− u(G(z))

]
Uniform Dominance Condition (UDC) for problem (P)

∃z̃ ∈ Z : inf
(η,c)∈graph M

{
F (2)(c>Y ; η)− F (2)(c>G(z̃); η)

}
> 0.

Theorem

Assume UDC. If ẑ is an optimal solution of (P) then û ∈ Um
M exists:

L(ẑ, û) = min
z∈Z

L(z, û) (3)

E
[
û(G(ẑ)

]
= E

[
û(Y )

]
(4)

If for some û ∈ Um
M an optimal solution ẑ of (3) satisfies the

dominance constraints and (4), then ẑ solves (P).
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Optimality Conditions Using Rank Dependent Utility Function

Lagrangian-like functional

Λ(z, ϑ, µ) = f (z) +

∫
C

1∫
0

F (−1)(c>Y ; p)− F (−1)(c>G(z); p) dϑc(p) dµ(c)

Uniform inverse dominance condition (UIDC) for (Q)
∃z̃ ∈ Z inf

(p,c)∈graph M−

{
F (−2)(c>G(z̃); p)− F (−2)(c>Y ; p)

}
> 0.

Theorem

Assume UIDC. If ẑ is a solution of (Q), then ϑ̂ : C →W2(M−) and
µ̂ ∈M+(C) exist:

Λ(ẑ, ϑ̂, µ̂) = min
z∈Z

Λ(z, ϑ̂, µ̂) (5)

∫
C

1∫
0

F (−1)(c>G(ẑ); p) d ϑ̂c(p) d µ̂(c) =

∫
C

1∫
0

F (−1)(c>Y ; p) d ϑ̂c(p) d µ̂(c) (6)

If for some ϑ̂ : C →W(M−), µ̂ ∈M+(C) and a solution ẑ of (5) the order
constraint and (6) are satisfied, then ẑ is a solution of (Q).
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Duality Relations to Utility Theories

The Dual Functionals

D(u) = inf
z∈Z

L(z,u) ∆(ϑ, µ) = inf
z∈Z

Λ(z, ϑ, µ)

The Dual Problems

(D2) max
u∈Um

M

D(u) (D−2) max
ϑ,µ

Φ(ϑ, µ).

Theorem
Under UDC/UIDC, if problem (P) resp. (Q) has an optimal solution,
then the corresponding dual problem has an optimal solution and the
same optimal value. The optimal solutions of the dual problem (D2)
are utility functions û ∈ Um

M satisfying (3)–(4) for an optimal solution ẑ
of problem (P). The optimal solutions of (D−2) provide rank
dependent utility functions ϑ̂c ∈ W(M−) and non-negative measures
on C satisfying (5)–(6) for an optimal solution ẑ of problem (Q).

Darinka Dentcheva Multivariate order constraints



Finite localizations

If z ∈ Rn, then at most n + 2 target values ηk , scalarizations ck and
shortfall levels E

[
(ηk − Y>ck )+

]
, k = 1, . . . ,n + 2, exists such that

problem (P) is equivalent to

min f (z)

s.t. E
[
(ηk − 〈ck ,G(z)〉)+

]
≤ E

[
(ηk − 〈ck ,Y 〉)+

]
,

k = 1, . . . ,n + 2,
z ∈ Z .

Corollary

If ẑ is an optimal solution of problem (P), then a piecewise linear
function ϕ̂ ∈ Um

M exists with no more than n + 2 pieces such that
conditions (5)-(6) are satisfied.

Similar result is established for (Q).

Homem de Mello– Merothra (2009), Noyan–Rudolf (2013) have shown that
for a finite probability space (c j , ηj ) are vertices of a particular polyhedron.
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Shortfall approximation method (with Eli Wolhagen)

Step 0: Set k = 1, (η1, c1) ∈ [a, b]× S, and J1 = {(η1, c1)}.
Step 1: Solve the master problem:

min f (z)

s.t. E
[(
ηj − 〈c j ,G(z)〉

)
+

]
≤ E

[(
ηj − 〈c j ,Y 〉

)
+

]
, j ∈ Jk .

z ∈ Z .

Let zk denote its solution and let X k = G(zk ).

Step 2: Calculate the quantity

δk = sup
η,c

{
E
[
(η−c>X k )+−(η−c>Y )+

]
: (η, c) ∈ [a, b]×S

}
.

Step 3: If δk ≤ 0, stop; otherwise, continue.

Step 4: Determine (ηk , ck ) such that

E
[
(η − c>X k )+ − (η − c>Y )+

]
≥ δk

2
.

Step 5: Set Jk+1 = Jk ∪ {(ηk , ck )}; k ← k + 1, and go to Step 1.
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Reduced Problems and Their Duals

Given a collection of point (ηj , c j ), j ∈ Jk for some index set Jk , k ∈ N, the
reduced problem is

min f (z)

s.t. E
[(
ηj − (c j )>G(z)

)
+

]
≤ E

[(
ηj − (c j )>Y

)
+

]
, j ∈ Jk .

z ∈ Z

The Lagrangian of the reduced problem is defined on Z × R|Jk |
+ is

Lk (z, µk ) = f (z) + E
[∑

j∈Jk

µk
j
(
ηj − (c j )>G(z)

)
+
−
∑
j∈Jk

µk
j
(
ηj − (c j )>Y

)
+

]
.

Extension µ̃k of µk to the entire set [a, b]× S by setting

µ̃k (A) =
∑
j∈Jk

µk
j 1A∩{(ηj ,cj )}.

The reduced dual function Dk : R|Jk | → R at the point µk

Dk (µk ) = min
z∈Z

Lk (z, µk ) = D(µ̃k ).
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Subgradients of the Reduced Dual Function

The subgradients of Dk (µ)

Γk
j (µ) = E

[(
ηj − (c j )>G(zk

µ)
)
+
−
(
ηj − (c j )>Y

)
+

]
, j = 1, . . . , |Jk |,

where zk
µ is such that Dk (µ) = Lk (zk

µ, µ).

For atomic measure µ` with atoms on the set {(ηj , c j ), j ∈ J`}, we define an
extension µ`,k ∈ R|Jk |

+ to the set {(ηj , c j ), j ∈ Jk ⊃ J`} by setting

µ`,kj =

{
µ`j if j ∈ J`
0 if j 6∈ J`.

Note: the subgradients Γ`,k (µ`,k ) are not subgradients of the dual function.

Piecewise linear model Dk : R|Jk | → R of the reduced dual function

Dk (µ) = min
1≤`≤k

{D(µ̃`) + (Γ`,k )>(µ− µ`,k )}.
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Dual Approximative Bundle Method (with Eli Wolhagen)

Step 1: Solve minx∈X Lk (x , µk ) and calculate new subgradients Γ`,k at µk .
Step 2: If k = 1 or if D(µk ) ≥ (1− γ)D(wk−1) + γϑk−1(µk ),

then set wk := µk ; else set wk := wk−1,k .
Step 3: Calculate a solution (θk+1, µ

k+1) of the master problem:

max
µ≥0
{θ−%

2
‖µ−wk‖2

2 : D(µ`)+(Γ`,k )>(µ−µ`) ≥ θ ` = 1 . . . k}.

Set ϑk (µk+1) = θk+1, x̃k =
∑k
`=1 π`x

`, and X̃ k = G(x̃k ),
where π is the optimal Lagrange multiplier.

Step 4: Calculate the quantities

δk = sup
η,c

{
E
[(
η − c>X̃ k)

+
−
(
η − c>Y

)
+

]
: (η, c) ∈ [a, b]× S

}
,

δ′k = max
j∈Jk

(
E
[(
ηj − (c j )>X̃ k)

+
−
(
ηj − (c j )>Y

)
+

])
.

Step 5: If D(wk ) ≥ θk+1 − ε and δk ≤ ε, then stop; otherwise continue.
Step 6: If δk > ε and δ′k ≤

δk
4 , then determine (η∗, c∗) such that

E
[
(η∗ − (c∗)>X̃ k )+ − (η∗ − (c∗)>Y )+

]
≥ 1

2δk

and set Jk+1 = Jk ∪ {(η∗, c∗)}; else set Jk+1 = Jk .
Set k ← k + 1 and go to Step 1.
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Convergence (with Eli Wolhagen)

Assume that problem (P) has a feasible solution, Z is compact
convex set, the operator G : Rn → LM

1 (Ω) is continuous, f is a convex
function; [Gi (x)](ω) is concave.

Theorem
I The shortfall approximation method generates a sequence {zk}

whose accumulation points are optimal solutions of problem (P).
I The dual method stops after finitely many iterations with

approximate optimal solutions x̃k and wk of the primal and the
dual problems, respectively, and a computable bound of the
approximation accuracy.
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Order-Verification Problem (with Eli Wolhagen)

min
{
E
[
η − c>Y

]
+
− E

[
η − c>X k]

+
: η ∈ [a, b], c ∈ S

}
≥ 0?

I DC-optimization Linearization of the function E
[

max(0, η − c>X k )
]
,

X k = G(zk ), at each point (c i , ηi ) ∈ Jk by subdifferentiation. Event

Aik = {ω ∈ Ω : 〈c i ,X k (ω)〉 ≤ ηi},

Subgradient of hk at (c i , ηi ) by Strassen’s Theorem:(
P(Aik )

−E[X k 1Aik ]

)
∈ ∂hk (ηi , c i ).

I Combinatorial methods for finite probability space.

Every event A is represented by αi =

{
1, if i ∈ A;
0, if i 6∈ A

for i = 1, . . . ,N.

min E
[
(c>Z − η)+

]
−

N∑
i=1

piαi (c>X k,i − η)

s. t. (c, η) ∈ S × [a, b], α ∈ {0, 1}N .

We alternate between minimizing in α for a fixed (c, η) and minimizing in
(c, η) keeping α fixed.
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Further Numerical Methods

I Cutting Surface Method and Sample Average Approximation
Homem de Mello-Mehrotra 2009, 2012;

I Exact Penalty Method and Sample Average Approximation
Meskarian-Fliege-Xu 2014;

I Strassen theorem representation Armbruster-Luedtke 2014;
I Augmented Lagrangian method Dentcheva-Martinez-Wolfhagen

2015.
I Methods based on Inverse formulation for univariate constraints

Dentcheva-Ruszczyński 2011
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Further Research

I Two-stage problems with constraints on stochastic-order
constraints on the recourse
Drapkin-Schultz 2007, Gollmer -Neise-Schultz 2008,
Dentcheva-Martinez 2012, Dentcheva-Wolfhagen 2015

I Multi-stage problem with stochastic order constraints
Dentcheva-Ruszczyński 2008

I Markov decision processes
Haskell-Jane 2012, Haskell-Shanthikumar-Shen 2015

I Stability, sensitivity and asymptotic behavior
Dentcheva-Henrion-Ruszczyński 2007, Dentcheva-Römisch 2013,
Klaus-Schultz 2015

I Shape optimization with stochastic-order constraints
Gotzes-Schultz 2014

I Radiation therapy design
Dentcheva-Ruszczyński-Vitt-Yue, 2015
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