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Controlled Markov Models

State space X (Borel)
Control space U (Borel)
Feasible control set U: X =z U, t=1,2,...

Controlled transition kernel @ : graph(U) — P(X), t=1,2,...
P(X) - set of probability measures on X

Cost functions c: X x U - R, t=1,2,...
State history hy = (x1,...,x¢) € X' (up to time t =1,2,...)
Policy 7 : Xt — U, t = 1,2,... (always supported in U(x;))

Markov policy 7+ : X — U, t=1,2,...
(stationary if m; = 1 for all t)

Xt —> Up = T¢(X¢t)

(Xt, Ur) —> Xp41 ~ Q(X¢, Uy)
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Risk-Neutral Total Cost Problem

Infinite horizon expected cost problem:

T1,7T2,...

o0
min ET Zat_lct(xt, ug) |, ae€(0,1]
t=1

with controls uy = (X1, ..., X¢)

Two Cases:

Discounted models (with @ < 1) and transient models (with « = 1)

Standard Results:
@ A deterministic Markov policy is optimal

@ Optimal policy can be found by dynamic programming equations

Our Intention

Introduce risk aversion to the problem by replacing
the expected value by dynamic risk measures

v
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Using Dynamic Risk Measures for Markov Decision Processes

o Controlled Markov process x, t =1,..., T

e Policy IT = {my, 75, ..., w7} with u; = m¢(x¢) implies measure P
o Cost sequence ZH = c(x!T, ;(x)) (bounded), t =1,..., T,

@ Dynamic time-consistent risk measure

I = Z{T 4+ o1 (2] + -+ o2 )
@ Risk-averse optimal control problem: min lim Jr(IT)
II T—oo
Difficulties

@ Probability measure P, processes XF and ZtH depend on policy IT

@ The one-step risk measures ,0{7(-) depend on IT and may depend on
history = no Markov policies

Idea

We only need to measure risk of random sequences that may occur

4
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Stochastic Conditional Time-Consistency (with Jingnan Fan)

History hy = (x1,...,xt). Process ZtH(ht) = c(x¢, mwe(hy)), t=1,..., T
A family of conditional risk measures {p;’ T}HEH + is stochastically
conditionally time-consistent if for all feasible policies IT, IT', all
1<t<T—1, and for all histories h; € X, the relations

.....

z[(he) = Z[" (hy)
(o, 7R, . ZDHE = ) <o (o7, 7(ZEL .. ZEH|HE = hy)

imply

pT(zI, ... ZH)(hy) < pTr(ZI ... 2 ) (hy)

The conditional stochastic order <;:

QI (he)(ty : ZF (he) + Ty +(ZIL1, ... ZE) (he,y) > 1))
< QT (ho)(ty : Z[" (he) + oIy w2 2 (hery) > )
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Markovian Risk Measures (with Jingnan Fan)

. .. 1 el
A family of process-based dynamic risk measures {pt’T} =1, T for a
Markov decision problem is Markovian if for all Markov policies IT € IT, for

any measurable and bounded ¢j,...,c7: X x U — R, and for all
he = (x1,....x¢) and W, = (x{,...,x;) such that x; = x}, we have

P (ce(Xe, e (X)), ... e (X7, w7 (X7))) (he)

— P{“,YT(Ct(Xt, w(Xt)), ..., cr(XT, JTT(XT)))(hIt)-

v

If the current state x; is the same, and the same Markov policy IT is used,

then the risk is the same. The risk measure can be written as a function of
the state:

PgT(Ct(Xt, me(Xe)), ..., er(XT, ”T(XT)))(Xt)
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Structure of Markovian Risk Measures (with Jingnan Fan)

For a fixed history-dependent policy IT and every h; € X, we write

vE (he) = plTr(ce(Xe, we(He)). .., e (X7, 27 (HT))) (he)

. .. IIell .
If a family of process-based dynamic risk measures {pT} " _is

Markovian, translation-invariant, and stochastically conditionally
time-consistent, then there exist transition risk mappings

o {(x. Qe(x, ) tuelUX), xeX}xV—>R, t=1,...,T-1

('V - space of measurable bounded functions on X)

such that for all [T € IT, for all t =1,..., T —1, and all hy € X?, the
functional ot(xt, Q¢ (x¢, we(hy), )) is a law-invariant risk measure on
(X, B(X), Qt) and for any ¢ = {¢t}+=1...7, we have

Vf’H(ht) = ce(xt, ﬂt(ht))+0t(xt, Qe(xt, e (hy)), Vtc_]_q(ht, )), t=1...7T-1

v
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Structure of Markovian Risk Measures (with Jingnan Fan)

For a fixed history-dependent policy IT and every h; € X, we write

T(he) = pir(ce(Xe. me(Hy). ... cr(Xr. w7 (HT))) (he)

If a family of process-based dynamic risk measures {p;’ T}HE@_. +is

Markovian, translation-invariant, and stochastically condltlonally
time-consistent, then there exist transition risk mappings

o {(x. Qe(x, ) tuelUX), xeX}xV—>R, t=1,...,T-1

('V - space of measurable bounded functions on X)

such that for all [T € IT, for all t =1,..., T —1, and all hy € X?, the
functional ot(xt, Q¢ (x¢, we(hy), )) is a law-invariant risk measure on
(X, B(X), Qt) and for any ¢ = {ct}¢=1...7, we have (for Markovian IT)

(xt) = ct(x¢, mwe(xt)) + O't(Xt, Qe (x¢, e (xt)), Vt+1 ( )) .T—1

v
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Finite Horizon Risk-Averse Control Problem

Consider a controlled Markov process {X;:} with u; = m:(X1,..., X¢).

Risk-averse optimal control problem:

ml_i[n Jr(I1, x1) = c1(xq, u1) + P{[(Cz(Xz, up) + -

+ s (erXr, ur) + pr(eran (X74)) ))

Theorem

If the conditional measures p!’ are Markovian (4 general conditions), then
the optimal solution is given by the dynamic programming equations:

vr+1(x) = cr+1(x), x€ X

ve(x) = mJ?) {Ct(X, u) + Ut(X» Qt(x, u), Vt+1)}» xeX,t=T,...,1
ueU(x

Optimal Markov policy 1= {m1,..., 7T} - the minimizers above

v
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Finite Horizon Risk-Averse Control Problem

Consider a controlled Markov process {X;:} with u; = m:(X1,..., X¢).

Risk-averse optimal control problem:

ml_i[n Jr(I1, x1) = c1(xq, u1) + P{[(Cz(Xz, up) + -

+ s (erXr, ur) + pr(eran (X74)) ))

Theorem

If the conditional measures p!’ are Markovian (4 general conditions), then

the optimal solution is given by the dynamic programming equations:
vr+1(x) = cr+1(x), x€ X

vi(X) = min {ci(x, u) + max E, |v },xeX,t=T,...,1
= { o)+ e oy Eelvenl

Optimal Markov policy 1= {71,..., 7T} - the minimizers above

v
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Infinite Horizon Risk (for stationary and coherent models)

Discounted risk measure (0 < o < 1)
LM, x) = Z7 + pf(azf +oot pl (@71 ZE) )

Optimal cost: J*(x) = mf ||m JFUT, %)

Assume that the model is stationary, the conditional risk measures py,
t=1,..., T, are Markovian (+ technical conditions). Then a bounded
function v : XX — R satisfies the dynamic programming equations

v(x) = ml? : {c(x, u) + ao(x, Q(x, u), v)} x e X,

if and only if v(-) = J*(-). Moreover, the minimizer 7*(x), x € X, on the
right hand side exists and defines an optimal Markov policy
m* ={z*,n*, ...}

If « = 1 additional conditions of risk transient models
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Infinite Horizon Risk (for stationary and coherent models)

Discounted risk measure (0 < o < 1)
2(11.x) = Z8 + pfT («ZfT + -+ o (@72 2fT) )
Optimal cost: J*(x) = inf lim J$(IT, x)
II T—oo

Assume that the model is stationary, the conditional risk measures py,
t=1,..., T, are Markovian (+ technical conditions). Then a bounded
function v : XX — R satisfies the dynamic programming equations

v(x) = min Jc(x,u) + « max E, [v]l;, xeX,
(x) ueU(X){ (x, ) WEA(x,Q(x,u)) ul ]}
if and only if v(-) = J*(-). Moreover, the minimizer 7*(x), x € X, on the

right hand side exists and defines an optimal Markov policy
m* ={z*,n*, ...}

If « = 1 additional conditions of risk transient models
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Continuous-Time Markov Chains

For a finite state space X, we consider a continuous-time Markov chain
{Xt}o<t<T with the transition function

Qt,r(}/|x) =PX, =y | Xt = x),

where x,y € X and 0 < t < r < T. We assume that the transition rates
o1
Ge(ylx) = ITt]) ;[Qt,t+r(}/|x) —-8(y)]. xyeX,
T

are uniformly bounded for all 0 < t < T. Here,

1 fy=x
S (y) =
2 0 otherwise

The rates constitute the generator Gy : X — M(X),
where M (X)) is the set of signed measures on X
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Stochastic Conditional Time Consistency (with Darinka Dentcheva)

£[0,1] - history (path) of the process X up to time t

Eff, - space of paths on [t, r] starting from &; Pff, - corresponding measure

A dynamic risk measure o = {Qt’T}tG[O 7] is stochastically conditionally
time-consistent, if forall 0 <t <r < T, all §p ; € E[p 4. if

or,7T(Z7) 1 §[0,q] Zst 0r, T(WT) | §[0,1]
then

01, 7(Z7)(§10,6) = 02, 7(WT)(Ep0,1) (*)

It is strongly stochastically conditionally time-consistent, if for any two times
rn,rn € [t, T], the inequality

0, 7T(Z7) 1 §10,6] Zst @ra, TWT) | €[04 implies (%)

The conditional stochastic order “<y™ for all n € R

P {0, 7(Z1) | 0.0 > 1} < P2 {0n, T(WT) | €0, > 1
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Markovian Risk Measures (with Darinka Dentcheva)

Cost of the process starting from &; at time t:

.
zt, = / c(XEE) ds + F(XEE)

t

A dynamic risk measure {Qt’T}tG[O 7] is Markovian, if forall 0 <t < T,
all paths E[o,t]»f[/o g the equality & = &} implies that for all bounded
measurable functions ¢ : [t, T] X X — R and f : X — R we have

0e.7(Z855) Gpo,) = 067(Z5) Ely )-

The risk of the future costs thT is a function of the last observed state &;.

v

For Markovian risk measures having the local property we write

ve(€d) = 0e.7(Z55) (€0)
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Structure of Markovian Risk Measures  (with Darinka Dentcheva)

Cost accumulated on the interval [t, r], given state &;:

15 (c) = / cs(XHE) ds
t
ke
“t,

. - space of paths on [t, r] starting from &; Pffr - corresponding measure

If {Qt’T}tG[O,T] is stochastically conditionally time-consistent, translation

invariant, and Markovian, then for every 0 <t <r < T and every §; € X

a functional gff, : Loo Sftr, Pi‘r) — R exists such that

ve(Ee) = got (IE5(0) + v (X5E))

Moreover, the functional g °(-) is law invariant with respect to the
probability measure Pf*,

If o is coherent, then g * (-) is a coherent measure of risk

v

Andrzej Ruszczynski Risk-Averse Control of Markov Systems




Transition Risk in Short Intervals (with Darinka Dentcheva)

Assumption: gffr(-) is Lipschitz continuous in £p(Eff,, Pffr), p € [1,00). J

If a dynamic risk measure {Qt,T} is strongly stochastically

te[0,T]
conditionally time-consistent, translation invariant, and Markovian, then for

every t € [0, T] a functional g; : X x £ (X) x L(X) — R exists such that
for every Z, for all £&; € X, and all r € [t, T] we have

vells) = / ColEe) ds + 0 (Ee, Qe (- [£0). v1) + o(r — 1),

(i) ot(,-,-) is law invariant with respect to the second argument
(ii) If o is coherent, then o+(&¢,,-) is a coherent measure of risk

(iii) For all x € X and all v € L(X), we have g;(x, §x, v) = v(x),
where 8, is the Dirac measure at x [ state consistency |
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Differentation of Multikernels (with Darinka Dentcheva)

@ - set of stochastic kernels Q : X — £ (X)

If o¢(x, m,-) is coherent, then the following dual representation is true:

oe(x.mv) = max > v(y)uy). ve LX),

MEAt(Xam)yex

where A;(x, m) C P (X) is a nonempty, convex, closed, and bounded set.
We define the multikernel 91 : Q@ = @:

M(Q) = {M € @ : M(x) € Alx, Q(x)), ¥ x € X}.

A multifunction 9 is semi-differentiable at the point / in the direction
K € Tg(I) if a nonempty set ©(K) C & exists, such that for every sequence
en 4 0 and every sequence K, — K, K, € Tg(l),

lim i[sm(/ + enKy) — 1] = D(K),

n—>00 g,
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Summary of Results (with Darinka Dentcheva)

@ Semiderivatives ©(K) of many transition risk mappings
(semideviations, average value at risk, etc.) exist and can be calculated,
for every tangent direction K

@ In our case, K = G; (the generator of the system)

@ For small time increments §, we can derive the “chain rule”
M(Qt,e45) ~ | +8D(Gy)

@ Using the support functions s,(v) = sup;eco(6,)(x) Zyex AY)v(y),
we derive the value function representation by ODEs:

5
Vgix) — —ci() —s(ve), te[0, T, xeX,

vr(x) = f(x), xe€X.

@ Close approximations by discrete-time models can be constructed,
and the discrete-time theory and methods apply

Andrzej Ruszczynski Risk-Averse Control of Markov Systems



Controlled Diffusion Processes

Filtered probability space (£2,%,P, F)
Filtration F is generated by n-dimensional Brownian motion {W:}c[o, ]
Controlled diffusion process with initial value ¢ € L£2(82, ¢, P; R™):

dXE5Y = b(s, XE5Y ug) ds + (s, XE4Y, ug) dWe, s € [t, T,
Xt =t

with functions b: [0, T x R"x U — R"and 0 : [0, T] x R" x U — R"™*¢,
Costrate c: [0, T] x R" x U — R; Final cost ¥ : R" — R.
Cost accumulated in the interval [t, T]

)
for(.0) = [ s XET 0 ds + WO, as.

t

All functions are assumed to be sufficiently regular (Lipschitz or bounded).
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Risk-Averse Control Problem

.
i c(s. XO™0 ug) ds + W (X3
min 007 ( | et X ey ds -+ w X

dX 270U = p(s, X2 1) ds + o (s, XO 0 ug) dWs, s € [0, T]
where {Qt’r}0<t<r<7— is a dynamic risk measure on the space of
square-integrable adapted processes on [0, T] x £2
Time consistency: 0:,(Y;) = Qt,s(gs,,(Y,)), forallt<s<r
Local property: 0+,(1aYr) = 1a0¢,(Yr), for all events A € ¥.
Structure of g¢,,(-) [Coquet, Hu, Mémin, Peng (2002)]

Under mild conditions, a generator g : [0, T] x R x R" exists, such that
0+.r(§) = Yi, where (Y, Z) solve backward stochastic differential equation

—dYs = g(s, Ys, Zs)ds — Z, dW;, se€[t,r], Y,=E&.

If g is convex, pos.-homogeneous, independent of y, then ¢ is coherent
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Dynamic Programming (with Jianing Yao)

Value function
T .
V(t, X) = inf Ot,T / C(S,X;’X;u, us) ds + III(X;_’X’U)
u()eU .

Dynamic Programming Equation
For any (t,x) € [0, T) x R" and all r € [t, T], we have

V(t,x) = (i;gu Qt,r|: / c(s, XI*U, ug) ds + V(r, x:’x;“)}.
u\- t

Related decoupled forward—backward system:
dXP5" = b(s, XEU ug) ds + o (s, XY, us) dWs, s € [t, 1]
X:’X;u =X
—dYPS = [e(s. XY, us) + g(s, ZEY) | ds — ZE dWs, s € [t 1]
VIV (r, XE0)
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Risk-Averse Hamilton—Jacobi—Bellman Equation (with Jianing Yao)

Laplacian operator:
[OC“W](t,X) = d;w(t,x) +

+ Z (o(t, x, )0 (t, x, ) ) sy W (E, X) + Zb (t, x,@)dx w(t, X).

i,j=1 i=1
Risk-Averse HIB Equation
On the space Cbl’2([0, T] x R"), we consider the following equation

min {c(t,x,a) + [£L2V](t. %) + g(t. [Dyv - o“](t,x))} -0 V(tx)
v(T,x) =¥(T,x), xe€R"

If the functions b and o are bounded, then the value function V/(t, x)
is a viscosity solution of the risk-averse HJB equation.
Conversely, if the HJB equation has a solution, it is equal to V/(t, x).

o
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Extensions and Current Research on Risk-Averse Control

o Partially Observable Markov Processes (with Jingnan Fan)

e process-based risk measures
e transition risk mappings on the observable part
e dynamic programming equations

o Risk-Averse Control of Clinical Trials
(with Darinka Dentcheva and Curtis McGinity)

e new dynamic models of clinical trials
e approximate dynamic programming methods

@ Risk-Averse Control of Diffusion Processes (with Jianing Yao)
e approximation by risk-averse Markov chains

Andrzej Ruszczynski Risk-Averse Control of Markov Systems



References

@ A. Ruszczynski, Risk-averse dynamic programming for Markov decision
processes, Mathematical Programming, Series B 125 (2010) 235-261

@ 0. Cavus and A. Ruszczynski, Computational methods for risk-averse
undiscounted transient Markov models, Operations Research, 62 (2), 2014,
401-417.

e 0. Cavus and A. Ruszczynski, Risk-averse control of undiscounted transient
Markov models, SIAM J. on Control and Optimization, 52(6), 2014,
3935-3966.

@ J. Fan and A. Ruszczynski, Process-based risk measures for observable and
partially observable discrete-time controlled systems, submitted for
publication.

@ D. Dentcheva and A. Ruszczynski, Risk measures for continuous-time Markov
chains, submitted for publication.

@ A. Ruszczynski and J. Yao, Risk-averse control of diffusion processes,
submitted for publication.

Andrzej Ruszczynski Risk-Averse Control of Markov Systems



