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Outline

© Conservative distribution approximations
@ Buffered probability of exceedance (bPOE)
© Multidimensional bPOE (M-bPOE)

© (Multivariate) conservative distribution approximations



Problem Description

@ Sample distribution of deviations from a desired value.

@ Robust approximation is needed (preferences:
continuous/grid, closed form).

@ Distribution is one of the many in a system. Deviations
from central values add up. Risk for the system.

e Conservative approximation needed: risks of high
deviations must not be underestimated.



Optimization Problem

max H(Y)

st X<y Y,—X<,—Y,
a2 (Y) < o} (X) + Ad?.

© Why Second-Order Stochastic Dominance?
Risk averse decision maker
© Why Entropy Maximization?
Smooth and robust solution
© Why Variance Constraint?
Bounded feasible set
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Method properties

@ Discussed dominance constraint guarantees “fatter” right
and left tails compared to sample X

@ When Ac? — 0, then optimal solution converges in
distribution to the sample distribution

@ Optimal solution is a maximum-of-Gaussians distribution

P(Y)= max Cexp{—(Y — pu;)?/20%}

i=1,....m



Convergence Example 1: Ac? < 0.01
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Convergence Example 2: Ac? < 0.005

A o? <0.005
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Convergence Example 3: Ag? < 0.001

A o? <0.001
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Convergence Example 4: Ac? < 0.0005
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Finite number of superquantile constraints

For discrete distribution the scaled superquantile is
(1= 0;)Qu,(X) = Z}n:i+1 pixi, ag = 0, aj = 2}21 pi

0.7

T T T
= |nitial Distribution
=B Dominated Approximation
=©- Dominating Approximation
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(1—a)CVaRa(X)
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QRa(Y) > Qu(X) for a = q is sufficient for SOSD
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bPOE explanation (continuous case)

P(X > x): probability of exceedance
P(X > q(x)): buffered probability of exceedance
q(x) : E[X|X > q(x)] = x, x — q(x): “buffer”
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Buffered Probability of Exceedance

P(X > x) = pu(X) < Bu(X)

px(X) is the only smallest quasi-convex and law-invariant
upper bound for p,(X)

px(X) = ir;](c) E[a(X — x) +1]"
where [x]T = max{0, x}
px(X) =1 for x < EX px(X) =0 for x > sup X

px(X) is decreasing and continuous for x € [EX, sup X)

1
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bPOE Properties w.r.t. Parameter x

1/p.(X) is a convex nondecreasing function of x
and piecewise-linear if X is discretely distributed
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Primal and Dual formulations for bPOE

p(X) = min E[a(X — x) +1]"
Px(X) = max EW
s.t. EXW > xEW
0o<wWw<l1
Px(X) = max EW
st.  EXW>xEW, i=1,.. .d
0<wW<l1

A\
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Multidimensional bPOE

Primal Multivariate

pe(X) = min E[a™(X —x) + 1]*

Suppose that instead of random variable X there is a random
vector X = (X1,..., X,).

If the law g for aggregating components of X into a value
g(X), determining undesired events, is known, then the
problem is reduced to bPOE framework.

What if there is no known law? Let us quantify risks as follows:

F x(—x) = P(X; > xyand ... and X, > x,) = px(X) < p(X)

1
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Lift Zonoid (by Koshevoy & Mosler)

Z(X) = {(p,y) e R |p=EW,y; = EWX,,0 < W < 1}

Z(X) uniquely determines distribution of X;

Z(X) is a convex set; (0,0) € Z(X); (1, EX) € Z(X);
if E|X| < oo, then Z(X) is compact;

if X is discretely distributed, then Z(X) is polyhedral
extreme points < expectations within linear cut-offs
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Lift Zonoid Transformation

Homography (p,u) — (1/p, u/p) applied to Z(X)
line — line & continuous in R, x RY| = preserves convexity
Thransforms Z(X) into epi(1/fx(x)), where

f(x) = sup EW =inf E[la”(X —x)+1]"
w a

s.t. EWX =xEW
0o<Ww<i1

1/fx(x) is convex, piecewise-linear, with knots of type

%(\, b) = Xp/Zp, X = [ Jx(\ b)

ATxi>b ATxi>p b



Stochastic Dominance Equivalence

Zonoid Dominance (Mosler & Koshevoy):

X <z Y & Z(X) C Z(Y)

Hence, X <7 Y & K(z) < f(z) for z € Xx

X <7 Y constraint as a finite number of linear constraints!
Linear Second Order Dominance (Dentcheva & Ruszczynski):
X<y o u™X < pu"Y forall p>0

X <MY & p,(X) < p(Y) for z € Xy{ := Ups0 X(1, b)

X <inY constraint as a finite number of linear constraints!
X <z Y and X <I"Y are closely related as fx(x) and p(X):

fx(x) = inf E[a"(X—x)+1]"  p(X) :;@; E[a"(X—x)+1]"

acRd
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Optimization problem formulation

Take v > 1 (analogue of Ao? in 1-dimensional version)

max H(Y)
st. X<z;Y (& -X<z-Y)
2(u"Y) <vy-0*(p"X) forall p
Dominance constraint < for all X' € Xx:
Eyil > fx(X')
EyY =%XEyil
o<V <P
Variance constraint < (A > 0 <> A — PSD)

EpYYT —vEXXT + (v — 1)EXEXT = 0
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Maximum of Gaussians form of optimal solution

With v — 1, optimal solution — ¢ sample distribution
Optimal solution is a weighted maximum of Gaussian
functions: A =0, u, >0

P(Y)=expd =YTAY = X\JY — A+ ) [l + (Y =) TAT*
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Convergence in distribution
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Thank you!
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