Optimization of Value-at-Risk: Computational
Aspects of MIP Formulations

Konstantin Pavlikov

Department of Industrial and Systems Engineering
University of Florida

November 9, 2015

Introduction

» Value-at-Risk is a standard tool in financial industry to measure and
control various types of risks, compute regulatory capital.

> It answers the question “What is the minimum threshold value that my
loss does not exceed with probability at least a?”
(Thus, my loss exceeds the threshold with probability at most 1 — «)

Consider Value-at-Risk minimization problem, which can be motivated as
follows: given that my loss exceeds the threshold value (VaR) with 5%
probability, | prefer it (threshold) to be as small as possible!

Other applications:

» Portfolio allocation: Gaivoronski and Pflug (2005), Feng, Wachter and
Staum (2015)

» Facility location: Daskin, Hesse and Revelle (1997); Chen, Daskin, Shen
and Uryasev (2006)

» Support vector machines: Tsyurmasto, Zabarankin and Uryasev (2014)

» Statistics: Least median of squares regression, Rousseeuw (1984)

VaR Definition

Definition:

VaRq (L) =inf{l e R:P(L> 1) <1—a}, a€(0,1]

Example: Loss is distributed uniformly

L ~7]-3]-1] 2|3
pi 02]02]02|02]02
P(L>1;)[08]06]04[02] 0

VaR(og1(£) =3 VaRoe0.8)(L) =2
Key Properties of VaR:

>

VaRq (L) = L; for some j.
» Translation Invariance

VaRo(C + £) = C + VaRa(L)

» Monotonicity

L1 L:1 Ll
Ll b | o VaRo | 72 | < VaR.
Lo L,Q Lg

> Inversion

VaR,(—L) = —VaR1_4(L)

VaR and CVaR lllustration

Il Il
N [B3(1 - @) tail of distribution |

o
—
T

Probability 1 — «/

&
<€ ?

Loss Frequency

0 T T
5 10 14 15 16 17 18 19 20

Figure: VaRo (L) =14, CVaR, (L)~ 15.2

Settings

» X is a convex bounded or a discrete bounded set of possible decisions,
xe X
» L(x) is a r.v. of losses with outcomes {L1(x),...,Lo(x)} with
probabilities {p1,...,po}
L;j(x) is a linear function of x and scenario information S;:
Li(x) = £(S); %)

L= mxin Li(x) < Lj = max L;j(x)

Minimum VaR problem : min VaR,(£(x)) <= min / (1)
xeX xeX

subject to
P(L(x)>1)<1-—a.

Nonconvexity

o
o
T

L

osf ‘\\N»\/\/]

L L L L
0 01 02 03 04 05 06 07 08 09 1
Fraction of Ford stock in portfolio

VaR, CVaR (%)
<
a @
:
. .

Figure: VaR nonconvexity example from Gaivoronski and Pflug (2005)

Solution approaches:

> Heuristics. Larsen et al. (2002)

MIP optimization with big Ms. Feng, Wachter and Staum (2015)
Chance-constrained optimization. Luedtke (2013), Feng, Wachter and Staum (2015)
MIP optimization with SOS1 constraints. Bertsimas and Mazumder (2014)

vYyy

MIP Optimization with Big Ms

In order to determine the P(L(x) > /), we also introduce a set of indicator
variables z; € {0,1}, j =1,...,Q, such that

z=1 = Lx)>,)
=0 = L®<I. 3)
. . Li(x)—1
(2) is equivalent to z; > —, which can only be correctly defined if M; is
j
“big" enough:
Lj(X) -1 < Mj Vx e X. (4)
MIP formulation:
min /
subject to

Li(x)—1
>
4=

J
Q
Y pz<l-a,
=t

z €{0,1}, ji=1,...,Q,

Big Ms, Feng, Wachter and Staum (2015)

Recently, efficient I\%- have beed proposed

dt(./) = Tea)z(Lj(x) - Lt(x)7 t= 17 e (5)
AA/’IJ':Valea(dl(j)v”'adQ(j))’ J=1...,Q. (6)

Proof.

VaRi—a (Lj(x) — £(x)) = L;(x) + VaR1_q (=£(x)) =
Lj(x) = VaRq (£(x)) = Lj(x) — /.

VaRi-a (Lj(x) — £(x)) =

Li(x) — L1(x) max (Lj(x) — L1(x))
VaRy_, | L*)— LK) max (Lj(x) — La(x))

< VaRi_q
Lj(x) = Lo(x)

t

[Ny

max (Lj(x) — Lo(x))

Remark. We can safely remove scenarios with I\7Ij < 0 from formulation. M+

is the set of scenarios with positive Mj, M~ — with noenpositive.

Scenario Classification

1<r<i, 1<1

»l<l; = z=1. let 1 ={je{1,....Q} |1 <L}

t t t t

1 1 L L
» [<] = z=0. let Qo={jef{l,....Q}| ;< I}.

t t t t

L; L; ! 7
»I>Land ;> 1, Q3 ={1,...,Q}\(Q1U D)

Lv*?SLj(X)*/ﬁZj*L

which implies that the lower bound / defines the M; = Z,v — 1 and that the minimum of M; and I\71,
can be used in the formulation that uses classification Q1, Q», Q3

min | (7)
subject to
Li(x)—1
5> —) -1 jEQNM*, (8)
min(M;, L; — 1)

1<i1<1, 9

Z pjzj~§1—u—2pj, (10)
JjeQsnm+ Jj€Q

z€{0,1}, jE QN M. (11)

Lower Bound Lifting

Let /9 be the initial lower bound on the optimal solution. Next bound is
defined as:

F=min |

subject to

zi > Lj~(x),_l
min(M;, L; — I°)

P<i<l,
Y pz<l-a-> p,

JjeEQNM+ JEQ

z €[0,1], jEQsNM*T.

, j€ Q3N MT,

Clearly,
>0

and we continue the iterative proccess until [k“ — [k <€

Lower Bound Lifting

Q 200 250 250 300 350 350
n= 10 10 10 10 10 10
a= 150/200 | 175/250 | 200/250 | 250/300 | 275/350 | 300/350
T 46126 | 3.1114 | 6.3921 7.3258 | 6.1729 | 8.7418
P —14.572 | —16.667 | —12.270 | —11.136 | —14.925 | —10.776
IS —6.1388 | —8.3930 | —3.8045 | —2.6224 | —5.3480 | —1.5655
P —6.1156 | —8.3542 | —3.7707 | —2.5877 | —5.3179 | —1.5260
B —6.1148 | —8.3529 | —3.7691 | —2.5864 | —5.3167 | —1.5246
I - - - - —5.3166 | —1.5245
[Qil 4 8 5 5 5 2
| k| 2 0 2 2 2 3
|M™] 2 1 4 4 3 6
|Q5 UM | 3 1 4 4 4 6
#j:0<L—1"< M 14 13 26 23 27 28
CPU total (sec.) | 2.49 416 | 325 | 430 | 644 | 443

Two Stage Solution Procedure

> It is important to apply a good heuristic to obtain an upper bound, /, to
potentially increase the cardinality of set Q1
> It is important to obtain a tight lower bound, [k, to potentially increase

the cardinality of set Q>
» Tight lower bound defines tight M; values

Is there any other tool to tighten the bounds?

Two Stage Solution Procedure

> It is important to apply a good heuristic to obtain an upper bound, /, to
potentially increase the cardinality of set Q1
> It is important to obtain a tight lower bound, [k, to potentially increase

the cardinality of set Q>
» Tight lower bound defines tight M; values

Is there any other tool to tighten the bounds?

Yes, the standard MIP solver!

Two Stage Solution Procedure

> It is important to apply a good heuristic to obtain an upper bound, /, to
potentially increase the cardinality of set Q1

> It is important to obtain a tight lower bound, [k, to potentially increase
the cardinality of set Q>

» Tight lower bound defines tight M; values

Is there any other tool to tighten the bounds?

Yes, the standard MIP solver!

» The branch-and-bound algorithm behind the solver continuously updates
upper and lower bounds until they coinside
» Let solver run for a prespecified number of BnB nodes N, then stop the
solver and record:
- new lower bound
- new upper bound
- new best solution
» Redefine Q1, Q», big Ms and restrart the solver to be run to optimality

Two Stage Solution Procedure

The solution procedure is outlined as follows:
» Use the best possible heuristic to obtain / and the corresponding feasible
solution xg; define Q
» Find big M; according to Feng et al. (2015)
» Find the initial lower bound [° and run the iterative lifting procedure to
find best possible bound [¥; define Q>

» Stage 1: Run the formulation with Q1, Q3 using xg as the “warm” start
for the solver; stop it when N branch-and-bound nodes have been solved.
- new upper bound | = new Q;
- new lower bound [Hl = new Q>
- new best feasible solution x

> Stage 2: Run the tightened formulation with x; as the new "warm” start,
to optimality

First Stage Results

Q 200 250 250 300 350 350
n= 10 10 10 10 10 10
a= 150/200 | 175/250 | 200/250 | 250/300 | 275/350 | 300/350
1 46126 | 3.1114 | 6.3921 | 7.3258 | 6.1729 | 8.7418
I —14.572 | —16.667 | —12.270 | —11.136 | —14.925 | —10.776
I —6.1388 | —8.3930 | —3.8045 | —2.6224 | —5.3480 | —1.5655
? —6.1156 | —8.3542 | —3.7707 | —2.5877 | —5.3179 | —1.5260
B —6.1148 | —8.3529 | —3.7691 | —2.5864 | —5.3167 | —1.5246
1* — - — - —5.3166 | —1.5245
[Q1] 4 8 5 5 5 2
|03 2 0 2 2 2 3
M| 2 1 4 4 3 6
Q3 UM™| 3 1 4 4 4 6
#j:0<Li—I*<M 14 13 26 23 27 28
CPU total (sec.) 2.49 4.16 3.25 4.30 6.44 4.43
7 3.2047 | 2.6128 | 5.5949 | 6.5253 | 4.8675 | 8.0982
IS —1.0191 | —3.8803 | 0.6905 | 2.0652 | —0.9117 | 2.3489
197 6 8 6 5 6 2
[Q3UM™| 3 2 5 6 4 9
#j:0<Li—P <M 79 82 103 104 113 105
CPU (sec.) 28.40 44.25 36.17 40.65 55.72 55.90

Table: First stage results after N = 100,000 BnB nodes.

Overall Computational Results

Q@ N ‘ Q H Obj H Benchmark | Two stage
150/200 | 50,000 | 200 | 2.3601 894.09 129.01
175/250 | 50,000 | 250 | 1.4178 - 2,959.96
200/250 | 50,000 | 250 || 4.0423 6,376.12 117.14
250/300 | 100,000 | 300 || 4.9235 1,734.79 424.75
275/350 | 100,000 | 350 || 3.3188 - 5,278.72
300/350 | 100,000 | 350 || 5.8179 5,501.75 727.58
350/400 | 200,000 | 400 || 6.4551 9,063.21 1,075.8
425/475 | 200,000 | 475 || 7.4338 - 3,432.05
Table: CPU time in seconds, benchmark vs. two-stage solution approach. “~" denotes

instances with out of memory error

Conclusion

» The importance of bounds on optimal VaR has been demonstrated

» With minimum coding and just using the solver as the only tool, it is
possible to cut the solution time by up to 80%

» There is a potential for a specialized BnB algorithm for such type of
problems that will be updating the LP matrix on fly as the bounds change
— something that can not be currently done using the functionality of
commercial solvers

Setting the Tight M,

Lj(x) — VaRa(£L(x)) < M; vxeX =

M; = max Lj(x) — VaRa(L(x)) =
—min —Lj(x) + VaRo(L(x)) =

xeX
—min VaR, (£(x) — L;j(x)) .

xeX
Let /; and 7j denote a lower and an upper bounds to the above VaR
minimization problem:

Iy < min VaRa(£(x) - Li(x)) <.

- <=)r(gl)rg VaRa(L(x) — Lj(x)) < —1;,

therefore,

M; < —I; (iteratively lifted).

Setting the Tight M,

mxin VaR, (L£(x))

M; = — mxin VaRq(L(x) — Li(x))| ... [Mg=— mxin VaRq (L(x) — Lo(x))

Figure: A scheme for computation of big M values for a general VaR optimization problem.

mxin VaRq(L(x) — Lj(x))

M =— min VaRo(L(x) = Li(x)) | - |Mp=— min VaRq (L(x) — Lo(x))

Figure: A scheme for computation of big M values for a subproblem of the VaR optimization
problem. Thus M, = M.

Restricting the Feasible Space X

Lj(x) — VaRa(L(x)) < M; Vx e X
However, we already know that | < VaR(£(x)) </, therefore
X' 'CcX: [<VaRu(L(x)) <1

This restricted feasible set can now be used to redefine other constants
>

" — min L T = .
L= min Li(x) < L; max Li(x)

di(j) = max Lj(x) — L(x), t=1,...,Q
xeX’

M;:VaRl—Ot (dill(.l)’vdb(./))) J:]"’Q

Connection to General Chance-Constrained Problems

in f
iy 1)

subject to
P(L(x) <0) > a < P(L(x) >0)<1—a <= VaR,(L(x)) <0.
Reformulated with big Ms:
)
subject to
/<0,
Lj(x) —1

M;

Q
Y pz<l-a,
j=1

Zj€{071}7 J:]-ny

zj >

An upper bound is obtained by solving the following convex problem:

F=min f
iy 09
subject to

CVaRq(£L(x)) < 0.

Connection to General Chance-Constrained Problems

X' cX: f(x)<f
Big Ms can be calculated based on the restricted feasiblie set X':

Mj::)r:;:% L(x)—1, j=1...,Q.

The outline of a special branch-and-bound algorithm for this problem:

» Solve the problem via the CVaR restriction to obtain X’

» Find M;, j=1,...,Q (possibly, approximately)

» Once branch and bound algorithm finds a new upper bound fy, then
> find new X{
» find Mj1 ,j=1,...,Q (possibly, approximately)

Remark: Redefining Ms may not necessary be done every single time an upper
bound is updated, but for instance every kth time.

