
Optimization of Value-at-Risk: Computational
Aspects of MIP Formulations

Konstantin Pavlikov

Department of Industrial and Systems Engineering
University of Florida

November 9, 2015

Introduction
I Value-at-Risk is a standard tool in financial industry to measure and

control various types of risks, compute regulatory capital.
I It answers the question “What is the minimum threshold value that my

loss does not exceed with probability at least α?”
(Thus, my loss exceeds the threshold with probability at most 1− α)

Consider Value-at-Risk minimization problem, which can be motivated as
follows: given that my loss exceeds the threshold value (VaR) with 5%
probability, I prefer it (threshold) to be as small as possible!

Other applications:

I Portfolio allocation: Gaivoronski and Pflug (2005), Feng, Wachter and
Staum (2015)

I Facility location: Daskin, Hesse and Revelle (1997); Chen, Daskin, Shen
and Uryasev (2006)

I Support vector machines: Tsyurmasto, Zabarankin and Uryasev (2014)
I Statistics: Least median of squares regression, Rousseeuw (1984)

VaR Definition
Definition:

VaRα (L) = inf{l ∈ R : P(L > l) ≤ 1− α} , α ∈ (0, 1]

Example: Loss is distributed uniformly

Lj −7 −3 −1 2 3
pj 0.2 0.2 0.2 0.2 0.2

P(L > Lj) 0.8 0.6 0.4 0.2 0

VaR(0.8,1](L) = 3 VaR(0.6,0.8](L) = 2

Key Properties of VaR:

I

VaRα(L) = Lj for some j .

I Translation Invariance

VaRα(C + L) = C + VaRα(L)

I Monotonicity
L1
L2
. . .
LQ

 ≤

L
′
1

L
′
2

. . .

L
′
Q

 =⇒ VaRα

L1
L2
. . .
LQ

 ≤ VaRα

L
′
1

L
′
2

. . .

L
′
Q

 .

I Inversion
VaRα(−L) = −VaR1−α(L)

VaR and CVaR Illustration

5 10 14 15 16 17 18 19 20
0

5 · 10−2

0.1
Probability 1− α

CVaRαL
os

s
F

re
q

u
en

cy

(1− α) tail of distribution

Figure: VaRα(L) = 14, CVaRα(L) ≈ 15.2

Settings

I X is a convex bounded or a discrete bounded set of possible decisions,
x ∈ X

I L(x) is a r.v. of losses with outcomes {L1(x), . . . , LQ(x)} with
probabilities {p1, . . . , pQ}

Lj(x) is a linear function of x and scenario information Sj :
Lj(x) = f (Sj , x)

Lj = min
x

Lj(x) < Lj = max
x

Lj(x)

Minimum VaR problem : min
x∈X

VaRα(L(x)) ⇐⇒ min
x∈X

l (1)

subject to

P(L(x) > l) ≤ 1− α .

Nonconvexity

Figure: VaR nonconvexity example from Gaivoronski and Pflug (2005)

Solution approaches:

I Heuristics. Larsen et al. (2002)
I MIP optimization with big Ms. Feng, Wachter and Staum (2015)
I Chance-constrained optimization. Luedtke (2013), Feng, Wachter and Staum (2015)
I MIP optimization with SOS1 constraints. Bertsimas and Mazumder (2014)

MIP Optimization with Big Ms
In order to determine the P(L(x) > l), we also introduce a set of indicator
variables zj ∈ {0, 1} , j = 1, . . . ,Q, such that

zj = 1 =⇒ Lj(x) > l , (2)

zj = 0 =⇒ Lj(x) ≤ l . (3)

(2) is equivalent to zj ≥
Lj(x)− l

Mj
, which can only be correctly defined if Mj is

“big” enough:

Lj(x)− l ≤ Mj ∀x ∈ X . (4)

MIP formulation:

min l

subject to

zj ≥
Lj(x)− l

Mj
, j = 1, . . . ,Q ,

Q∑
j=1

pjzj ≤ 1− α ,

zj ∈ {0, 1} , j = 1, . . . ,Q ,

Big Ms, Feng, Wachter and Staum (2015)
Recently, efficient M̃j have beed proposed

dt(j) = max
x∈X

Lj(x)− Lt(x) , t = 1, . . . ,Q . (5)

M̃j = VaR1−α (d1(j), . . . , dQ(j)) , j = 1, . . . ,Q . (6)

Proof.

VaR1−α (Lj(x)− L(x)) = Lj(x) + VaR1−α (−L(x)) =

Lj(x)−VaRα (L(x)) = Lj(x)− l .

VaR1−α (Lj(x)− L(x)) =

VaR1−α

Lj(x)− L1(x)
Lj(x)− L2(x)
. . .
Lj(x)− LQ(x)

 ≤ VaR1−α

max
x

(Lj(x)− L1(x))

max
x

(Lj(x)− L2(x))

. . .
max
x

(Lj(x)− LQ(x))

 = M̃j .

Remark. We can safely remove scenarios with M̃j ≤ 0 from formulation. M+

is the set of scenarios with positive M̃j , M− – with nonpositive.

Scenario Classification

l ≤ l∗ ≤ l , l < l .

I l < Lj =⇒ zj = 1 . Let Q1 = {j ∈ {1, . . . ,Q}
∣∣ l < Lj}

l l Lj Lj

I Lj ≤ l =⇒ zj = 0 . Let Q2 = {j ∈ {1, . . . ,Q}
∣∣ Lj ≤ l} .

Lj Lj l l

I l ≥ Lj and Lj > l , Q3 = {1, . . . ,Q}\(Q1 ∪Q2)

Lj − l ≤ Lj(x)− l ≤ Lj − l .

which implies that the lower bound l defines the Mj = Lj − l and that the minimum of Mj and M̃j

can be used in the formulation that uses classification Q1, Q2, Q3

min l (7)

subject to

zj ≥
Lj(x)− l

min(M̃j , Lj − l)
, j ∈ Q3 ∩M+ , (8)

l ≤ l ≤ l , (9)∑
j∈Q3∩M+

pjzj ≤ 1− α−
∑
j∈Q1

pj , (10)

zj ∈ {0, 1} , j ∈ Q3 ∩M+ . (11)

Lower Bound Lifting

Let l0 be the initial lower bound on the optimal solution. Next bound is
defined as:

l1 = min l

subject to

zj ≥
Lj(x)− l

min(M̃j , Lj − l0)
, j ∈ Q3 ∩M+ ,

l0 ≤ l ≤ l ,∑
j∈Q3∩M+

pjzj ≤ 1− α−
∑
j∈Q1

pj ,

zj ∈ [0, 1] , j ∈ Q3 ∩M+ .

Clearly,
l1 ≥ l0

and we continue the iterative proccess until lk+1 − lk < ε

Lower Bound Lifting

Q = 200 250 250 300 350 350
n = 10 10 10 10 10 10
α = 150/200 175/250 200/250 250/300 275/350 300/350

l 4.6126 3.1114 6.3921 7.3258 6.1729 8.7418

l0 −14.572 −16.667 −12.270 −11.136 −14.925 −10.776
l1 −6.1388 −8.3930 −3.8045 −2.6224 −5.3480 −1.5655
l2 −6.1156 −8.3542 −3.7707 −2.5877 −5.3179 −1.5260
l3 −6.1148 −8.3529 −3.7691 −2.5864 −5.3167 −1.5246
l4 − − − − −5.3166 −1.5245
|Q1| 4 8 5 5 5 2
|Qk

2 | 2 0 2 2 2 3
|M−| 2 1 4 4 3 6

|Qk
2 ∪M−| 3 1 4 4 4 6

j : 0 < Lj − lk < M̃j 14 13 26 23 27 28

CPU total (sec.) 2.49 4.16 3.25 4.30 6.44 4.43

Two Stage Solution Procedure

I It is important to apply a good heuristic to obtain an upper bound, l , to
potentially increase the cardinality of set Q1

I It is important to obtain a tight lower bound, lk , to potentially increase
the cardinality of set Q2

I Tight lower bound defines tight Mj values

Is there any other tool to tighten the bounds?

Yes, the standard MIP solver!

I The branch-and-bound algorithm behind the solver continuously updates
upper and lower bounds until they coinside

I Let solver run for a prespecified number of BnB nodes N, then stop the
solver and record:

- new lower bound
- new upper bound
- new best solution

I Redefine Q1 , Q2, big Ms and restrart the solver to be run to optimality

Two Stage Solution Procedure

I It is important to apply a good heuristic to obtain an upper bound, l , to
potentially increase the cardinality of set Q1

I It is important to obtain a tight lower bound, lk , to potentially increase
the cardinality of set Q2

I Tight lower bound defines tight Mj values

Is there any other tool to tighten the bounds?

Yes, the standard MIP solver!

I The branch-and-bound algorithm behind the solver continuously updates
upper and lower bounds until they coinside

I Let solver run for a prespecified number of BnB nodes N, then stop the
solver and record:

- new lower bound
- new upper bound
- new best solution

I Redefine Q1 , Q2, big Ms and restrart the solver to be run to optimality

Two Stage Solution Procedure

I It is important to apply a good heuristic to obtain an upper bound, l , to
potentially increase the cardinality of set Q1

I It is important to obtain a tight lower bound, lk , to potentially increase
the cardinality of set Q2

I Tight lower bound defines tight Mj values

Is there any other tool to tighten the bounds?

Yes, the standard MIP solver!

I The branch-and-bound algorithm behind the solver continuously updates
upper and lower bounds until they coinside

I Let solver run for a prespecified number of BnB nodes N, then stop the
solver and record:

- new lower bound
- new upper bound
- new best solution

I Redefine Q1 , Q2, big Ms and restrart the solver to be run to optimality

Two Stage Solution Procedure

The solution procedure is outlined as follows:

I Use the best possible heuristic to obtain l and the corresponding feasible
solution x0; define Q1

I Find big M̃j according to Feng et al. (2015)
I Find the initial lower bound l0 and run the iterative lifting procedure to

find best possible bound lk ; define Q2

I Stage 1: Run the formulation with Q1, Q3 using x0 as the “warm” start
for the solver; stop it when N branch-and-bound nodes have been solved.

- new upper bound l =⇒ new Q1

- new lower bound lk+1 =⇒ new Q2

- new best feasible solution x1

I Stage 2: Run the tightened formulation with x1 as the new “warm” start,
to optimality

First Stage Results

Q = 200 250 250 300 350 350
n = 10 10 10 10 10 10
α = 150/200 175/250 200/250 250/300 275/350 300/350

l 4.6126 3.1114 6.3921 7.3258 6.1729 8.7418

l0 −14.572 −16.667 −12.270 −11.136 −14.925 −10.776
l1 −6.1388 −8.3930 −3.8045 −2.6224 −5.3480 −1.5655
l2 −6.1156 −8.3542 −3.7707 −2.5877 −5.3179 −1.5260
l3 −6.1148 −8.3529 −3.7691 −2.5864 −5.3167 −1.5246
l4 − − − − −5.3166 −1.5245
|Q1| 4 8 5 5 5 2
|Q4

2| 2 0 2 2 2 3
|M−| 2 1 4 4 3 6

|Q4
2 ∪M−| 3 1 4 4 4 6

j : 0 < Lj − l4 < M̃j 14 13 26 23 27 28
CPU total (sec.) 2.49 4.16 3.25 4.30 6.44 4.43

l
1

3.2047 2.6128 5.5949 6.5253 4.8675 8.0982

l5 −1.0191 −3.8803 0.6905 2.0652 −0.9117 2.3489

|Q1
1| 6 8 6 5 6 2

|Q5
2 ∪M−| 3 2 5 6 4 9

j : 0 < Lj − l5 < M̃j 79 82 103 104 113 105
CPU (sec.) 28.40 44.25 36.17 40.65 55.72 55.90

Table: First stage results after N = 100, 000 BnB nodes.

Overall Computational Results

α N Q Obj Benchmark Two stage

150/200 50, 000 200 2.3601 894.09 129.01
175/250 50, 000 250 1.4178 − 2, 959.96
200/250 50, 000 250 4.0423 6, 376.12 117.14
250/300 100, 000 300 4.9235 1, 734.79 424.75
275/350 100, 000 350 3.3188 − 5, 278.72
300/350 100, 000 350 5.8179 5, 501.75 727.58
350/400 200, 000 400 6.4551 9, 063.21 1, 075.8
425/475 200, 000 475 7.4338 − 3, 432.05

Table: CPU time in seconds, benchmark vs. two-stage solution approach. “–” denotes
instances with out of memory error

Conclusion

I The importance of bounds on optimal VaR has been demonstrated

I With minimum coding and just using the solver as the only tool, it is
possible to cut the solution time by up to 80%

I There is a potential for a specialized BnB algorithm for such type of
problems that will be updating the LP matrix on fly as the bounds change
– something that can not be currently done using the functionality of
commercial solvers

Setting the Tight Mj

Lj(x)−VaRα(L(x)) ≤Mj ∀x ∈ X =⇒

Mj = max
x∈X

Lj(x)−VaRα(L(x)) =

−min
x∈X

−Lj(x) + VaRα(L(x)) =

−min
x∈X

VaRα (L(x)− Lj(x)) .

Let l j and l j denote a lower and an upper bounds to the above VaR
minimization problem:

l j ≤ min
x∈X

VaRα(L(x)− Lj(x)) ≤ l j ,

− l j ≤ −min
x∈X

VaRα(L(x)− Lj(x)) ≤ −l j ,

therefore,

Mj ≤ −l j (iteratively lifted) .

Setting the Tight Mj

min
x

VaRα(L(x))

M1 = −min
x

VaRα(L(x)− L1(x)) · · · MQ = −min
x

VaRα(L(x)− LQ(x))

Figure: A scheme for computation of big M values for a general VaR optimization problem.

min
x

VaRα(L(x)− Lj(x))

Mj
1 = −min

x
VaRα(L(x)− L1(x)) · · · Mj

Q = −min
x

VaRα(L(x)− LQ(x))

Figure: A scheme for computation of big M values for a subproblem of the VaR optimization
problem. Thus Mj

t = Mt .

Restricting the Feasible Space X

Lj(x)−VaRα(L(x)) ≤Mj ∀x ∈ X

However, we already know that l ≤ VaRα(L(x)) ≤ l , therefore

X ′ ⊂ X : l ≤ VaRα(L(x)) ≤ l

This restricted feasible set can now be used to redefine other constants

I

L′j = min
x∈X ′

Lj(x) < L
′
j = max

x∈X ′
Lj(x)

I

d ′t(j) = max
x∈X ′

Lj(x)− Lt(x) , t = 1, . . . ,Q .

M̃ ′j = VaR1−α
(
d ′1(j), . . . , d ′Q(j)

)
, j = 1, . . . ,Q .

Connection to General Chance-Constrained Problems

min
x∈X

f (x)

subject to

P(L(x) ≤ 0) ≥ α ⇐⇒ P(L(x) > 0) ≤ 1− α ⇐⇒ VaRα(L(x)) ≤ 0 .

Reformulated with big Ms:

min
x∈X

f (x)

subject to

l ≤ 0 ,

zj ≥
Lj(x)− l

Mj
, j = 1, . . . ,Q ,

Q∑
j=1

pjzj ≤ 1− α ,

zj ∈ {0, 1} , j = 1, . . . ,Q .

An upper bound is obtained by solving the following convex problem:

f = min
x∈X

f (x)

subject to

CVaRα(L(x)) ≤ 0 .

Connection to General Chance-Constrained Problems

X ′ ⊂ X : f (x) ≤ f

Big Ms can be calculated based on the restricted feasiblie set X ′:

Mj := max
x∈X ′

L(x)− l , j = 1, . . . ,Q .

The outline of a special branch-and-bound algorithm for this problem:

I Solve the problem via the CVaR restriction to obtain X ′

I Find Mj , j = 1, . . . ,Q (possibly, approximately)
I Once branch and bound algorithm finds a new upper bound f 1, then

I find new X ′
1

I find M1
j , j = 1, . . . ,Q (possibly, approximately)

I · · ·

Remark: Redefining Ms may not necessary be done every single time an upper
bound is updated, but for instance every kth time.

