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Background and Motivation
[ ]

The problem of interest

Problem: W* := minycx {W(x) := Y}, £i(x) + h(X) + pw(x)}.
X closed and convex.

fi smooth convex: ||[Vfi(x1) — Vii(x2)|l« < Lil[x1 — xzl.

h simple, e.g., /; norm.

w strongly convex with modulus 1 w.r.t. an arbitrary norm.
p > 0.

Subproblem argmin, . (9. X) + h(x) + pw(x) is easy.

Denote f(x) = > fi(x)and L = Y7, L;. f is smooth with
Lipschitz constant L; < L.
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Background and Motivation
L]

Stochastic subgradient descent for nonsmooth
problems

@ General stochastic programming (SP): min,cx E:[F(x, &)].
@ Reformulation of the finite sum problem as SP:

@ lteration complexity: O(1/¢%) or O(1/¢) (1 > 0).
@ lteration cost: m times cheaper than deterministic
first-order methods.

@ Save up to a factor of O(m) subgradient computations.
@ For details, see Nemirovski et. al. (09).
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Background and Motivation
[ ]

Required ’s in the smooth case

For simplicity, focus on the strongly convex case (i > 0).
Goal: find a solution X € X s.t. [[x — x*|| < ¢||x? — x7].

@ Nesterov’s optimal method (Nesterov 83):
L 1
O {m ~log ;} ;
@ Accelerated stochastic approximation (Lan 12, Ghadimi
and Lan 13):

O{ %Iog}+%§}

Note: the optimality of the latter bound for general SP does not
preclude more efficient algorithms for the finite-sum problem.
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Background and Motivation
[ ]

Randomized incremental gradient methods

Each iteration requires a randomly selected Vf;(x).

@ Stochastic average gradient (SAG) by Schmidt, Roux and
Bach 13:
O ((m+L/u)logl).
@ Similar results were obtained in Johnson and Zhang 13,
Defazio et al. 14...

@ Worse dependence on the L/ than Nesterov’s method.
@ Intimidating proofs ...
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Background and Motivation
L]

Coordinate ascent in the dual

min {3°7",¢i(al x) + h(x)}, h strongly convex w.r.. I2 norm.
All these coordinate algorithms achieve O { o Llog ! }
@ Shalev-Shwartz and Zhang 13, 15 (restarting stochastic
dual ascent),

@ Lin, Lu and Xiao, 14 ( Nesterov, Fercog and P. Richtarik’s),
see also Zhang and Xiao 14 (Chambolle and Pock),

@ Dang and Lan 14 (non-strongly convex), O(1/¢) or
O(1/+/e).
Some issues:
@ Deal with a more special class of problems.
@ Require argmin{(g, y) + ¢:(y) + |l¥||?}, not incremental
gradient methods.
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Background and Motivation
[ ]

Open problems and our research

Problems:

@ Can we accelerate the convergence of randomized
incremental gradient method?

@ What is the best possible performance we can expect?
Our approach:

@ Develop the primal-dual gradient (PDG) method and show
its inherent relation to Nesterov’s method.

@ Develop a randomized PDG (RPDG).
@ Present a new lower complexity bound.
@ Provide game-theoretic interpretation for acceleration.
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Deterministic PDG
[ ]

Reformulation and game/economic interpretation

Let J; be the conjugate function of 7. Consider
W= mingex { h(X) + pw(x) + maxgeg (X, g) — Jr(9) }

@ The buyer purchases products from the supplier.

@ The unit price is given by g € R".

@ X, hand w are constraints and other local cost for the
buyer.

@ The profit of supplier: revenue ((x, g)) - local cost J;(g).
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Deterministic PDG
[ ]

How to achieve equilibrium?

Current order quantity x°, and product price g°.
Proximity control functions:
P(X0.x) = w(x)— [w(x®) + (/(x0),x — x0)].
Di(gP.yi) = Jr(g) — [Ur(9°) + (Ji(9%). g — )]
Dual prox-mapping:
Mg(ij(v g07 T) ‘=arg rgnelg {<7)?v g> + Jf(g) + TDf(gov g)}
X is the given or predicted demand. Maximize the profit, but not
too far away from g°.

Primal prox-mapping:

Mix(g,x%,m) = argmin { (g, x) + h(x) + pw(x) + nP(x% x)}.
X

g is the given or predicted price. Minimize the cost, but not too

far way from x°.
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Deterministic PDG
o

The deterministic PDG

Algorithm 1 The primal-dual gradient method

Let x° = x~! € X, and the nonnegative parameters {7}, {n;},
and {«;} be given.
Set g% = V{(x9).
fort=1,... kdo

Update z! = (x!, y!) according to

xt = (M{(Xt71 _ XPZ) +th1_

g = Mg(=X,g" ", 7).

xt = Mx(g',x" 1, n).
end for
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Deterministic PDG
[ ]

A game/economic interpretation

@ The supplier predicts the buyer's demand based on
historical information: x! = ay(x!=" — x'=2) 4 x'=1.

@ The supplier seeks to maximize predicted profit, but not too
far away from g'=': g = Mg(—X!, 9", 7).

@ The buyer tries to minimize the cost, but not too far away
from x'=1: x' = My (g%, x=1, ).
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Deterministic PDG
L]

PDG in gradient form

Algorithm 2 PDG method in gradient form

Input: Let x° = x~ ' € X, and the nonnegative parameters
{7t} {m:}, and {a;} be given.

Set x0 = x0.
fort=1,2,... kdo

XU = ay(xt=1 = xt72) 4 xt-1.
xt = (X'+7x71) /(1 + 7).
gt = VIHxD.

xt = Mx(g', x"" 1, ny).

end for

Idea: set J;(g' ") = x'" 1.
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Deterministic PDG
[ ]

Relation to Nesterov’s method

A variant of Nesterov’s method:

xt = (1% " 4+ 0px! .
xt = MX(Z;‘LVfi(Kt),th,m).

Xt = (1=0)X"1 +6x".

Note that

xt = (1= 00X+ (1 = 0)0ra (X' = x"72) + Opx" 1.

Equivalent to PDG with 7; = (1 —6;)/6; and o = 0;_1(1 —0:)/0:.

Nesterov’s acceleration: looking-ahead dual players.
Gradient descent: myopic dual players (a; = 7 = 0 in PDG).
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Deterministic PDG
[ ]

Convergence of PDG (or Nesterov’s variant)

Theorem
Define x* .= (3K ,6;) ", (6:x!). Suppose that

— ZiLf — — fry \' 2Lf//1 l
Tt = 7 7]1—\/2Lf/1,, af = o = 1+\/m, and 91‘ of
Then,

P(x*, x*) “T—lLf(ka(XO Xx*).

IA N

V() —w(x*) < p(l—a) [1+ 2+ L )}akP(XO,x*).

Theorem

| A

lfre =50 e =%, ap = 51, and 6; = t, then

w(;(k) - w(x*) < 7ty PO, x*).

N

14/23



Randomized PDG
[ ]

A multi-dual-player reformulation

@ Let J : )V — R be the conjugate functions of f; and )/},
i=1,..., m, denote the dual spaces.
Minxex {A(x) + pw(x) + maxyey, (x, 32 yi) — 2, J¥)}
@ Define their new dual prox-functions and dual
prox-mappings as
Di(y?.yi) = Jiy) = D) + D).y = v,
My, (=%,y2,7) = arg }[@'5} {(=%,y) +Ji(yi) +TDi(y?, ¥)) } -
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Randomized PDG
L]

The RPDG method

Algorithm 3 The RPDG method
Let x = x~' € X, and {t}, {n:}, and {a;} be given.
Set y? = Vii(x9), i=1,....m.
fort=1,... kdo

Choose /i according to Prob{i; = i} = p;, i =1,....m.
)?t = ()c'f(Xti‘I _ Xt*2) + Xf*‘]
yt = /\/ly/(—)"(f,yif*ﬂﬂ)’ =1t
’ yi i # .
yt _ pr1(th - }/,H) + y,-H, i =i,
' v, i+
XU= Mx(E X m).
end for
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Randomized PDG
[ ]

RPDG in gradient form

Algorithm 4 RPDG
fort=1,... , kdo

Choose i; according to Prob{i; =i} = p;, i=1,....,m.

¥t = Oét(xtf‘l _ thZ) _~_th1'

o {(1 +r) 7 (KT, =i

LY _ , .
xi 1, I # .

PR A CONNE

: yjt_17 I# if'

XU = M@+ (o, = DW=y X ).
g = g +yl-y
end for
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Randomized PDG
[ ]

Game-theoretic interpretation for RPDG

@ The suppliers predict the buyer's demand as before.

@ Only one randomly selcted supplier will change his/her
price, arriving at y'.

@ The buyer would have used y! as the price, but the

algorithm converges slowly (a worse depedence on m)
(Dang and Lan 14).

@ Add a dual prediction (estimation) step, i.e., j/’ s.t.
E[[j/it] - .}A/jt! where j}it = Myi(i)”(ts y/ti‘l ) Tjt)'
@ The buyer uses ' to determine the order quantity.
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Randomized PDG
L]

Rate of Convergence

LetC = %. and

pi = Prob{ii=i}= -+ 4 i=1,....m,
(m— 1)2+4mC( )

Tt =
wy/ (m—1) +4m +p(m— 1
nt =
ar = a=1- L .
(m+1)-++/(m—1)2+4mC
Then

E[P(xK,x")] < (14 2H)akP(x0, x7),
EW(X9)] - ¥* < k(1 —a)~" [u+2L+ 2] P(x, x7).

19/23



Randomized PDG
[ ]

The iteration complexity of RPGD

@ Tofind a point x € X st E[P(X,x*)] <e:
O{(m+ )Iog{ (XX)H.

@ Tofind a pomt x € X s.t. Prob{P(x,x*) <e} >1— \for
some \ € (O 1):

O{(m+ )Iog{ (XX)}}.

@ A factor of O {min{\/;, ﬁ}} savings on gradient

computation (or price changes), if L ~ Ly, at the price of
more order transactions.
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Randomized PDG
L o)

Lower complexity bound

MiN, crA i1, m (W) =0 (i) + 5lxl5] } -

fi(x;) = ) [1(Ax, ;) — (e1,x)] . A = n/m,

2 10 0 0O 0 0
1 2 -1 0 0 0 0 B
A=l ... o o — VQ43
0O 0 0 0 1 2 9 Vet
O 0 0 0 0 -1 =&

Denote q := (/O — 1)(v/Q + 1). Then the iterates {x*} generated
by a randomized incremental gradient method must satisfy

B[l —x*|2] - 1 4k\/D
O—E = 2 8XP <_ m(@+1>z_4¢@) for any

n> n(m. k) = [mlog [ (1 - (1 - ¢2)/m)" /2]]/(2log g).
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Randomized PDG
oe

Complexity

The number of gradient evaluations performed by any randomized
incremental gradient methods for finding a solution x € X s.t.
E[||x — x*[|3] < e cannot be smaller than

{(F I m) log X~ ”2} if n is sufficiently large.

Other results in the paper
@ Generalization to problems without strong convexity.

@ Lower complexity bound for randomized coordinate
descent methods.
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Summary
[ ]

Summary

@ Present a primal-dual gradient method which exhibits
optimal black-box complexity.

@ Present a randomized primal-dual gradient method.

@ Introduce a lower complexity bound for randomized
incremental gradient methods.

@ Introduce a game-theoretic interpretation for first-order
methods.
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