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Presentation outline

1. Introduction
1.1 Design, test, and possible redesign
1.2 Optimization framework

2. Methods
2.1 Multi-fidelity modeling
2.2 Optimization of safety margins
2.3 Calibration and redesign

3. Preliminary results for simple demonstration example
I Tip displacement of cantilever beam with Euler-Bernoulli and

Timoshenko beam models
4. Discussion & future work
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Design, test, and possible redesign

I At the initial design stage, design optimization
often relies on low-fidelity models

I In the future, high-fidelity models can be used
to test the initial design

I High-fidelity model results may trigger a
redesign process

I Redesign can restore safety or improve design
performance

I May delay design process and/or
increase costs

Design
Optimization

Test

Redesign ?

Final Design

Calibration

Design
Optimizationno

yes
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Optimization framework

I The design process is formulated
deterministically in terms of safety
margins

I A simulation of model error explores
how the optimum deterministic
design, reliability, and performance
may change conditional on the future
test

I The safety margins are optimized
based on the design process
simulation

Optimization of Safety Margins

Simulation of Determi-
nistic Design Process

For i = 1, . . . ,m realizations of
epistemic model uncertainty :

1. Initial design optimization
2. Simulated high-fidelity evaluation
3. Possible calibration
4. Possible redesign optimization
5. Reliability assessement

Safety Margins Statistics
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Multi-fidelity modeling

Low-fidelity + Error = Predictive Model

Modeling epistemic model error

The high-fidelity model gH(·, ·) is predicted from the low-fidelity model gL(·, ·) as

ĜH(x, u) = gL(x, u) + Ê(x, u)

where function Ê(x, u) is a Gaussian process (GP) model

5/18



Outline Introduction Methods Beam example Discussion

Optimization of safety margins

I The safety margins are optimized to minimize
expected cost while satisfying constraints on
expected probability of failure and probability
of redesign

I The constraint on probability of redesign can
be varied to capture the tradeoff between
performance and probability of redesign

Safety margin optimization

min
n

E
[
f (X̂final )

]
s.t. E

[
P̂f ,final

]
≤ p̄f

pre ≤ p̄re

I E [·] : expected value with
respect to epistemic
uncertainty

I X̂final : possible final designs
I P̂f ,final : possible final

probability of failures
I pre : probability of redesign
I n = {nini , nlb , nub , nre} : vector

of safety margins
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Initial design optimization

I During design optimization aleatory variables
are replaced with conservative values and
mean surrogate prediction is used

I The safety margin, nini , changes the size of
the feasible design space to add more or less
conservativeness to the design

I A smaller safety margin may allow for better
design performance but final design may be
less safe

Initial design optimization

min
x

f (x)

s.t. E
[
ĜH(x, udet)

]
− nini > 0

I E
[
ĜH(x, udet)

]
: mean

surrogate prediction
I udet : vector of fixed

conservative values used in
place of aleatory random
variables

I nini : initial safety margin
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Future test and redesign

I The design will be tested under fixed
conditions U = udet

I The uncertainty in the test result is only due
to the epistemic model uncertainty (not
aleatory uncertainty U)

I A realization of a possible test result (i.e.
high-fidelity evaluation) is simulated based on
the GP error model

I If the test is passed the designer will accept
the initial design as being satisfactory

I If the test is not passed, redesign will be
performed to find a new design

Redesign decision
The test will be passed if

nlb ≤ ĝ (i)
H (x ini , udet) ≤ nub

where ĜH(x ini , udet) is normally distri-
buted according to GP model
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Calibration and redesign optimization

I If redesign is required, the model is first
calibrated conditional on the realization of the
test result

I The model is calibrated by adding the
simulated data point to the initial design of
experiment (DoE)

I A new design x̂(i)
re is found by solving a new

optimization problem
I During redesign the feasible design space is

changed in two ways
1. Redesign safety margin nre may be

different than nini
2. Mean surrogate prediction is updated

conditional on the realization of future
test

Redesign optimization

min
x

f (x)

s.t. E
[
Ĝ(i)
H,upd (x, udet)

]
− nre > 0

I E
[
Ĝ(i)
H,upd (x, udet)

]
: updated

mean surrogate prediction
I nre : redesign safety margin
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Probability of failure calculation

I After possible redesign, the probability of
failure is calculated with respect to aleatory
uncertainty

I The probability of failure is calculated for each
possible realization of the GP model

I The probability of failure after redesign is
different from the initial probability of failure
because we will have the opportunity to
change the design after the test

Probability of failure calculation
Initial probability of failure

p̂(i)
f ,ini = PrU

[
ĝ (i)
H (x ini , U) < 0

]
Probability of failure after redesign

p̂(i)
f ,re = PrU

[
ĝ (i)
H (x(i)

re , U) < 0
]

I PrU [·] : probability with
respect to aleatory uncertainty
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Final distributions

I Finally, the distributions of the design variable
and probability of failure are obtained

I The redesign decision shapes the distribution
of possible future designs and probability of
failure

I The bounds on acceptable safety margins nlb
and nub ensure that an unsafe or overly
conservative design does not make it through
the testing process

Final distributions

Let q(i) denote an indicator function
for the redesign decision

q(i) =
{

0 No redesign
1 Redesign

}
Final design after possible redesign

X̂final = (1− Q)x ini + QX̂ re

Final probability of failure after pos-
sible redesign

P̂f ,final = (1− Q)P̂f ,ini + QP̂f ,re
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Demonstration example

I A cantilever beam is designed to
minimize mass subject to a constraint
on tip displacement

I There are 4 variables : 2 design
variables, 2 aleatory random variables

Problem parameters :

Design variables : x = {w , t}
I 3 ≤ w ≤ 8 in : width of beam
I 3 ≤ t ≤ 8 in : thickness of beam

Aleatory variables : U = {X ,Y }
I X ∼ Normal(6250, 12502) lbs : vertical

tip load
I Y ∼ Normal(12500, 12502) lbs :

horizontal tip load
I udet = E(U) + 1.645

√
Var(U) =

{8306, 14556} lbs
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Limit-state function

I The low-fidelity model is based on
Euler-Bernoulli beam theory and
doesn’t account for shear stress
effects that occur in short, stubby
beams

I The high-fidelity model is based
Timoshenko beam theory

I Model is only used for
generating preliminary test data

I The error model is constructed based
on preliminary test data

I 4 beam designs (corners)
I 9 loading configurations (3

levels)

Problem parameters :
Low-fidelity model

gL(x, U) = d̄ −
4l3

ewt

√(Y
t2

)2
+
( X
w2

)2

High-fidelity model

gH(x, U) = d̄ −
√

d2
x + d2

y

dx =
(

3lX
2gwt

+
4l3X
ewt3

)
dy =

(
3lY
2gwt

+
4l3Y
ew3t

)
I l = 8 : length of beam (in)
I e = 29× 106 : elastic modulus (psi)
I g = 11.2× 106 : shear modeulus (psi)
I d̄ = 2× 10−3 allowable tip displacement

(in)
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Visualizing model uncertainty

Deterministic design optimization
(normalized design space)

Reliability analysis
(standard normal space)
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Safety margin and reliability distribution

I Example of using redesign to improve performance if initial design is revealed to
be overly conservative

15/18



Outline Introduction Methods Beam example Discussion

Design variable distribution

I If redesign is performed, a thinner width of beam is selected to reduced mass
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Area of cross section distribution

I If redesign is required, the area of the
beam is reduced by about 10%

I This is a relatively large reduction for
weight critical applications

I In this example, a designer may be
willing to accept the risk of redesign
since the potential performance
improvement is large
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Discussion & Future Work

I Preliminary results illustrate the benefits of simulating a future test and redesign
to make informed decisions at the initial design stage

I In this study, we introduced the Gaussian Process error model as a flexible
representation of epistemic model error

I Previous, work by UF MDO group had relied on the assumption of
constant model bias

I In future work we would like to calculate the tradeoff curve for expected
performance and probability of redesign

I Future work will also compare the simulation results to the results that are
obtained if we perform a true test using the high-fidelity model

I Final results will be presented at the AIAA SciTech Forum 2016 in San Diego on
January 4-8th 2016
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