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VaR and POE

Some Notation...
Y:= a real valued random variable
z 2 R:= a threshold level
↵ 2 [0, 1]:=probability level

Quantile (VaR) & Probability of Exceedance (POE)
q↵(Y):= min{z : P(Y  z) � ↵} =quantile of Y at ↵ 2 [0, 1]

POE at z: probability level where q↵(Y) = z
or {1 � ↵ : q↵(Y) = z} = P(Y > z) = pz(Y)
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CVaR and bPOE

Some Notation...
Y:= a real valued random variable
z 2 R:= a threshold level
↵ 2 [0, 1]:=probability level

Superquantile (CVaR) & Buffered Probability of Exceedance (bPOE)
q̄↵(Y):= E[Y|Y > q↵(Y)] = superquantile of Y at ↵ 2 [0, 1]

bPOE at z: probability level where q̄↵(Y) = z
or {1 � ↵ : q̄↵(Y) = z} = p̄z(Y)
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POE vs bPOE?

Probability of Exeedance (POE)
POE is concerned with the proportion of events exceeding a
threshold z 2 R.
DOES NOT consider the magnitude of these events.
Considers only a count of events exceeding a threshold z 2 R.

Buffered Probability of Exceedance (bPOE)
bPOE is concerned with the proportion of events, that when
considered together, have average magnitude equal to some
threshold z 2 R.
bPOE is a probability measurement that accounts for the
magnitude of tail events.
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Why is bPOE important?

POE can hide critical information
When the distribution of Y is heavy tailed, the magnitude of tail
events is important.

Example: Hurricane Damage Data

Threshold POE (%) bPOE (%)
(Damage in $ billions)

100 1 3
50 4 10
10 15 69
1 48 100

0.1 79 100

Damage Data =
Heavy-tailed distribution
Notice: bPOE reflects
heavy-tail (e.g. at
threshold $10 billion)
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Calculation of bPOE & Superquantile

Calculation of superquantile

Let E[·]+ = E[max(·, 0)]. The superquantile of Y at probability level
↵ 2 [0, 1] equals:

q̄↵(Y) = min
�

� +
E[Y � �]+

1 � ↵

Calculation of bPOE
bPOE of Y at threshold z 2 R equals:

p̄z(Y) = inf
�<z

E[Y � �]+

z � �
(1)
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Easy Probability Minimization

Consider a linear loss function L(w, Y) = wTY with parameters
w 2 Rn and real valued random vector Y 2 Rm.

Minimize POE of loss at threshold z = 0...Hard Problem!

min
w

P(L(w, Y) > 0)

Minimize bPOE of loss at threshold z = 0...Easy Problem!

min
w

p̄0(L(w, Y)) = min
w

E[L(w, Y) + 1]+
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The Binary Classification Problem
THE DATA:
We have samples {(X1, y1), . . . , (XN , yN)} where

Xi 2 IRn: vector of features for sample i
yi 2 {�1,+1}: class label of sample i

THE TASK:
Using the labeled samples, construct a linear function f : Rn ! R that
predicts labels.

X0! f(X0)  0 !y0 = �1

X0! f(X0) > 0 !y0 = +1

Application Examples:
Credit scoring: X = financial indicators; y = creditworthy or
not?
Medical: X = patient health indicators; y = has disease or not?
E-mail filtering: X = e-mail text; y = spam or not?
Recommendation: X = past purchases; y = beer or wine?
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Margin Maximization: Support Vector Machines

Let’s Think Geometrically
Find a ‘separating’ hyperplane

What is our function (i.e. hyperplane)?

f (X) = wTX � b

What makes a good hyperplane? One
with maximum margin

max
w,b

1
kwk2

⌘ min
w,b

kwk2

Matthew Norton Soft Margin SVM as Buffered Probability Minimization



Introduction
The Binary Classification Application

Our Results

Geometric Approach: SVM’s
Probabilistic Approach: bPOE Minimization

Finding the Maximum Margin Hyperplane: SVM
formulation

Step 1: Define our random loss function:
L(w, b,Xi, yi) = �yi(wTXi � b)

If prediction is wrong, �yi(wTXi � b) > 0
If prediction is right, �yi(wTXi � b) < 0

Step 2: Define our formulation to solve for max margin hyperplane:

Hard Margin Support Vector Classifier

min
w,b

kwk2

s.t. 0 � �yi(wTXi � b) + 1 , 8 i 2 {1, ...,N}
(2)
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Q: What if data not linearly separable?
A : Introduce tradeoff between in-sample accuracy and margin size

Soft Margin Support Vector Classifier: The C-SVM

min
w,b,⇠

Ckwk2 +
NX

i=1

⇠i

s.t. ⇠i � �yi(wTXi � b) + 1 , 8 i 2 {1, ...,N}
⇠ � 0

(3)

Hard Margin Support Vector Classifier

min
w,b

kwk2

s.t. 0 � �yi(wTXi � b) + 1 , 8 i 2 {1, ...,N}
(4)
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Let’s Think Probabilistically
Find hyperplane that minimizes probability of losses

Step 1: Define our random loss function:
L(w, b,Xi, yi) = �yi(wTXi � b)

If prediction is wrong, �yi(wTXi � b) > 0
If prediction is right, �yi(wTXi � b) < 0

Step 2: Define formulation: Minimize probability of losses exceeding
some threshold �C  0:

min
w,b

p�C

✓
�y(wTX � b)

kwk

◆
⌘ min

w,b
P
✓
�y(wTX � b)

kwk � �C
◆
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Problem! With empirical observations, probability minimization is
non-convex, discontinuous.

Idea: Minimize buffered probability of exceedance instead!

min
w,b

p̄�C

✓
�y(wTX � b)

kwk

◆
(5)

#

Using bPOE formula, (5) becomes the EC-SVM

min
w,b,⇠

NX

i=1

⇠i

s.t. ⇠i � Ckwk � yi(wTXi � b) + 1
⇠ � 0

(6)
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bPOE minimization and C-SVM: Equivalent problems!

Soft Margin Maximization:
The C-SVM

min
w,b,⇠

Ckwk2 +
NX

i=1

⇠i

s.t. ⇠i � �yi(wTXi � b) + 1
⇠ � 0

(7)

bPOE minimization:
The EC-SVM

min
w,b,⇠

NX

i=1

⇠i

s.t. ⇠i � Ckwk � yi(wTXi � b) + 1
⇠ � 0

(8)

What did we prove?
C-SVM and EC-SVM are equivalent for C � 0.
Equivalence holds for ANY general norm.
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Why is this interesting? What else have we proved?

C-SVM
Derived with geometric
intuition
Previously, no interpretation
for C-parameter
Previously, no interpretation
for optimal objective value

EC-SVM
Derived from probabilistic
intuition
Free parameter, C, has
statistical interpretation
(bPOE threshold)
Optimal objective value is a
probability level

“..the parameter C has no intuitive meaning.”
Shawe-Taylor, Cristianini (2004)
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A Larger Framework

A Larger Framework: Superquantiles and Soft Margins

Ĉ 2 [0,+1) C 2 (�1,+1) = �z
" " "

C-SVM ⇢ EC-SVM ⌘ min
w,b

p̄z
�
�y(wTX � b)

�

m m m
⌫-SVM ⇢ E⌫-SVM ⌘ min

w,b
q̄↵

�
�y(wTX � b)

�

# # #
⌫̂ 2 (⌫min, ⌫max] ⌫ 2 [0, 1] = 1 � ↵

Key:
m — Formulations generate same set of optimal hyperplanes.
⇢ — The right hand side formulation is an “extension” of the
left hand formulation.
⌘ — Formulations are objectively equivalent.
" or # — Arrow points to parameter values for the formulation
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Summary

SVM’s are an extremely popular tool for classification
We showed that SVM’s can also be viewed as a simple bPOE
minimization problem
We derived an equivalent SVM that is more interpretable than
the classical formulation
We showed that it fits into a larger framework, fully connecting
soft margin classification with superquantile concepts
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max
�

NX

i=1

�i

s.t. k
NX

i=1

�iyixik⇤  C

NX

i=1

�iyi = 0

0  �i  1 , 8 i 2 {1, . . . ,N}

max
�

NX

i=1

�i

s.t. k
NX

i=1

�iyixik⇤  C
NX

i=1

�i

NX

i=1

�iyi = 0

0  �i  1 , 8 i 2 {1, . . . ,N}

max
�

NX

i=1

�i

s.t.
NX

i=1

NX

i=1

�i�j(yiyj�(xi)
T�(xj)� C2)  0

NX

i=1

�iyi = 0

0  �i  1 , 8 i 2 {1, . . . ,N}
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