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• Generalities:

– Examples of stochastic problems

– Discretization of probability space

• Surrogate models for solutions of stochastic equations (SEs)

– Stochastic reduced order models (SROMs)

– Surrogates for solutions of SEs

– Examples: Stochastic transport equation & Random eigenvalue problems

• Extremes of solutions of SEs:

– Matrix-valued random fields

– Solution by the extreme value theory (EVT)
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GENERALITIES

• Engineering/financial problems:

INPUT =⇒ SYSTEM =⇒ OUTPUT

(random) (stoch.eqs) (?)

• Formulation of stochastic problems:

– Construct probabilistic models for input/system

– Calibrate these models to the available information

- Observable parameters (classical statistical methods)

- Unobservable parameters (solutions of inverse problems)

• Output characterization:

– Monte Carlo simulation method: general, computationally demanding

– Popular methods: Stochastic Galerkin and collocation

– SROM-based method
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• Example 1:

l

x

U (x)

Z2
Z1

– Input: Z = (Z1, Z2) = a two-dimensional random vector

– System (defining equation): U ′′(x) = −Z1 (l − x)/Z2, 0 < x < l

=⇒ stochastic equation (SE), i.e., equation with random entries

– Output/Solution: U(x) = (Z1/Z2)
(
l x2/2− x3/6

)
– Note:

(1) Stochastic dimension of this problem is 2

(2) U(x) = parametric random function, i.e., deterministic function of x ∈ (0, l)

that depends on 2 RVs (stochastic dimension = 2)

(3) Statistics of U(x) can be obtained simply and efficiently by MC
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(4) Solution U(x) = U(x;Z1, Z2) = a response surface over (Z1, Z2) for each x ∈ [0, l]

(x = 0.0, 0.5, 0.7, and 0.9: top left, top right, bottom left, and bottom right)
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• Example 2: Suppose stiffness Z2 varies randomly along the beam, i.e.,

Z2 7→ random function Z2(x)

– Input: Z1 = a random variable and Z2(x) = a random function

Note: Stiffness ∼ infinite family of RVs {Z2(x)} indexed by x ∈ (0, l)

– System (defining equation): U ′′(x) = −Z1 (l − x)/Z2(x), 0 < x < l

=⇒ infinite stochastic dimension

– Output/Solution: U(x) = −Z1

∫ x
0

[ ∫ z
0

(
(l − y)/Z2(y)

)
dy

]
dz, 0 < x < l

– Statistics of U(x):

- Generate samples Z1 of Z2(x)

- Calculate corresponding samples of U(x)

- Estimate properties of U(x) from its samples

– Note:

- Samples of U(x) ∼ double integrals

- Monte Carlo method is less attractive even for

this very simple stochastic problem
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• General formulation:

L[U(x, t)] = Y (x, t), x ∈ D ⊂ Rd, t ∈ [0, τ ] (with appropriate B/ICs)

L = algebraic, differential, . . . operator with random entries

Y (x, t) = random input

• Example of SPDE: ∇ ·
(
A(x)∇U(x)

)
= B(x), x ∈ D ⊂ Rd (+ BCs)

A(x), B(x) = random fields defined on a

probability space (Ω,F , P )
• Comments:

– If mapping A,B 7→ U is measurable =⇒ U is a random field on (Ω,F , P )

– Random fields A(x), B(x) = uncountable families of real-valued random variables

indexed by x ∈ D =⇒ infinite stochastic dimension

– We can view SPDEs as PDEs defined on (physical space)× (probability space), i.e.,

the product space (D × Ω,B(D)×F , λ× P )

• Conditions that A(x);B(x) must satisfy:

– Mathematical conditions: Solution existence/uniqueness

(Babuška, I. M. et.al., SIAM Journal of Numerical Analysis, 2004)

– Physical conditions: e.g., samples of A(x) must be, e.g., realistic microstructures
6



• For calculations, we need to discretize

– Physical space (FEM)

– Probability space ←

• Discretization of probability space:

– Construct a parametric model Ad(x, Z) for A(x), i.e., a deterministic function

of x ∈ D that depends on a random vector Z = (Z1, . . . , Zd)

=⇒ finite stochastic dimension (equal to d), e.g.,

Ad(x, Z) =
∑d

i=1Zi φi(x), x ∈ D

({φi} = specified deterministic functions)

– KL parametric models:

- Can only match the first two moments of A(x) (unless Gaussian)

- Provides no information on sample properties

– Sample parametric models:

- Same functional form as KL parametric model

- Matches target sample properties (essential if interested in output extremes)
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• Construction of sample parametric models:

– Generate independent samples A(x, ω) of A(x)

– Select a basis {ψi(x)} and set Ad(x, Z) =
∑d

i=1Zi ψi(x)

– Calculate corresponding samples of {Zi} by minimizing the distance

d
(
A(x, ω), Ad(x, Z(ω))

)
= sup

x∈D

∣∣∣∣A(x, ω)− d∑
i=1

Zi(ω)ψi(x)

∣∣∣∣,
– Store {Zi(ω)} and construct samples of Ad(x, Z)

• Example:

– Beta translation field: A(x) = a + (b− a)F−1Beta(p,q) ◦ Φ
(
G(x)

)
, x ∈ D = (0, l1)× (0, l2)

where a = 3, b = 20, p = 2, q = 6, l1 = 20, l2 = 10, ρ = 0.7, and

G(x) = homogeneous Gaussian field with E[G(x)] = 0 and spectral density

s(λ) =
1

2 π
√
1− ρ2

exp

(
− λ21 − 2 ρ λ1 λ2 + λ22

2 (1− ρ2)

)
, λ ∈ R2, |ρ| < 1.

– Parametric model for A(x):

Ad(x, Z) =
∑d

i=1Zi ψi(x) ({ψi} = product of Chebyshev polynomials in x1 and x2)
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– Samples of Ad(x, Z) and A(x):

Samples of Ad(x, Z) with d = 25 (left top panel), d = 100 (right top panel),

and d = 225 (left bottom panel) and target sample of A(x)
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SURROGATE MODELS

• Objective: Construct surrogate models ŨL(x, Z) for solutions U(x, Z) of SPDEs,

i.e., accurate + efficient approximations of U(x, Z)

• Ingredients of ŨL(x, Z):

– Stochastic reduce order models (SROMs) Z̃ with samples {z̃k} for Z

– Deterministic solutions of SPDEs for {Z = z̃k} and gradients of these solutions

• SROM Z̃ for Z: a random vector defined on the probability space of Z such that

– Dimension(Z̃) = Dimension(Z);

– Z̃ has a finite number of samples {z̃k}, k = 1, . . . ,m; and

– PL(Z̃) ∼ PL(Z)

• Algorithm for constructing Z̃:

– Select m samples of Z at random and partition the range Γ = Z(Ω) of Z in Voronoi

cells {Γk} centered on {z̃k}, where Γk = {z ∈ Γ : ∥z − z̃k∥ ≤ ∥z − z̃l∥, l ̸= k}

– Calculate the discrepancy between PL(Z̃) and PL(Z)

(Note: {z̃k} and {P (Z ∈ Γk)} define the law of Z̃)

– Repeat previous steps to select the optimal pair {z̃k,Γk}, i.e., the pair that minimizes

the discrepancy between PL(Z̃) and PL(Z)
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• Example of SROM: Z ∼ Gamma(2, 3):

– Discrepancy between PL(Z̃) and PL(Z) can be measured by, e.g.,

r̄∑
r=1

(
E[Zr]− E[Z̃r]

)2
+

∫ (
F (α)− F̃ (α)

)2
dα

– First 6 moments of Z by an SROM Z̃ with m = 20 (dash heavy line)

and by MC corresponding to 100 sets of 20 samples (thin solid lines)
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• Note:

– SROM moments ≃ exact moments

– MC moments exhibit significant sample-to-sample variation and can be inaccurate
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• Surrogate model for the mapping x 7→ U(x, Z) defined by the first example of SE

Recall the response surfaces for the displacement U(x;Z1, Z2) of a stochastic beam

(x = 0.0, 0.5, 0.7, and 0.9: top left, top right, bottom left, and bottom right)
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• Surrogate model for a mapping x 7→ U(x, Z) defined by an arbitrary SE:

ŨL(x, Z) =
∑m

k=1 1
(
Z ∈ Γk

) [
ũk(x) +∇ũk(x) · (Z − z̃k)

]
ũk(x) = U(x, z̃k)

∇ũk(x) =
(
∂U(x, Z)/∂z1, . . . , ∂U(x, Z)/∂zd

)
for Z = z̃k

z̃k

ũk(x) + ∇ũk(x).(z − z̃k)
U(x, Z)

Γk

Γ = Z(Ω)

• Note: Samples of ŨL(x, Z) result from samples of Z by elementary calculations
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Example 1: Stochastic transport equation

• Problem definition: ∇ · (A(x)∇U(x)) = 0

x ∈ D ⊂ R2, D = (0, l1)× (0, l2)

U(0, x2) = 0, U(l1, x2) = 1, ∂U(x1, 0)/∂x2 = ∂U(x1, l2)/∂x2 = 0

– Beta conductivity field: A(x) = α + (β − α)F−1Beta(p,q) ◦ Φ
(
G(x)

)
G(x) = homogeneous Gaussian field with mean 0, variance 1,

and spectral density given in a previous slide

– Parametric model: A(x) ≃ Ad(x, Z) =
∑d

i=1Zi ψi(x), x ∈ D
({ψi(x)} = Chebyshev polynomials)

=⇒ U(x) ≃ U(x, Z) is a parametric random field

with stochastic dimension d

– Surrogate model: UL(x, Z) =
∑m

k=1 1(Z ∈ Γk)
[
ũk(x) +∇ũk(x) · (Z − z̃k)

]
(piecewise linear approximation of U(x, Z))

– Numerical results for: l1 = 20, l2 = 10, a = 3, b = 20, p = 2, q = 6,

ρ = 0.7, and stochastic dimension d = 200
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• Implementation of surrogate models:

– SPDE with Z = z̃k =⇒ ũk(x), k = 1, . . . ,m

– Gradient equations: ∂(SPDE)/∂Zr, r = 1, . . . , d

∇ · (Ad(x, Z)∇Vr(x, Z)) = −∇ ·
(
Ad(x, Z)

∂Zr
∇U(x, Z)

)
for Z = z̃k,

where Vr(x, Z) = ∂U(x, Z)/∂Zr

• Calls of deterministic solver:

(m + 1) d = 4020 calls for d = 200 and m = 20

=⇒ Impractical for large stochastic dimensions

• Alternative surrogate model U ∗L(x, Z):

– Main idea: Approximate Z by its projection on the subspace spanned by the

dominant eigenvectors of its covariance matrix

– Calls of deterministic solvers:

(m + 1) d∗ = 120 for d∗ = 5 and m = 20, where d∗ = #{retained eigenvectors}

15



• Solution statistics:

– Note: Statistics of U ∗L(x, Z) ≃ Statistics of UL(x, Z), e.g.,

– Estimates of E[U(x, Z)] by ŨL(x, Z); Ũ
∗
L(x, Z) (left panel) and MC (right panel)
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– Estimates of Std[U(x, Z)] by ŨL(x, Z); Ũ
∗
L(x, Z) (left panel) and MC (right panel)
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• Estimation of unobservable parameters:

– Assume the law of A(x) is known up to a parameter λ, which

- Cannot be measured and

- Enter the definition of a global property that can be measured, e.g.,

the specimen apparent conductivity Aapp(D) = (1/l2)
∫
DA(x) [∂U(x, Z)/∂x1] dx

– Solution in the Bayesian framework:

- View λ as a random variable Λ with prior density f ′(λ)

- Construct surrogates ŨL,λ(x, Z) for U(x, Z) | (Λ = λ), generate samples of

ŨL,λ(x, Z), and calculate corresponding samples of the conditional

apparent conductivity Aapp(D) | (Λ = λ)

- Construct approximations for the density f (· | λ) of Aapp(D) | (Λ = λ) by using

samples of this conditional random variable

- Construct the likelihood function ℓ(λ | data) =
∏

i f (aapp,i(D) | λ) of λ from actual

measurements {aapp,i(D)} of Aapp(D) and the densities f (· | λ)
- Quantify the information on λ by the posterior density f ′′(λ) ∝ f ′(λ) ℓ(λ | data)

– Surrogates are efficient tools for solving this inverse problem, i.e., finding f ′′(λ)

17



Example 2: Random eigenvalue problem

• Problem definition: Find eigenvalues/eigenvectors of A = A(Z) ∼ square matrix,

where Z = d-dimensional random vector

– Surrogate model for the eigenvalues Λi(Z) of A(Z)

Λ̃i(Z) =

m∑
k=1

1(Z ∈ Γk)

[
λ̃i,k +

d∑
r=1

λ̃
(r)
i,k (Zr − z̃k,r)

]

– Ingredients of Λ̃i(Z): λ̃i,k = Λi(Z) and λ̃
(r)
i,k = ∂Λi(Z)/∂Zr for Z = z̃k

(obtained by deterministic calculations)

– Calculation of λ̃
(r)
i,k : Differentiate det(A− Λ I) = Λn +C1 Λ

n−1 + · · ·+ Cn−1 Λ +Cn = 0

wrt the components {Zr} of Z

nΛn−1
∂Λ

∂Zr
+
∂C1

∂Zr
Λn−1 + (n− 1)C1 Λ

n−2 ∂Λ

∂Zr
+ · · · + ∂Cn−1

∂Zr
Λ + Cn−1

∂Λ

∂Zr
+
∂Cn
∂Zr

= 0

=⇒λ(r)i,k =
∂Λi(Z)

∂Zr
|Z=z̃k= −

c
(r)
1,k λ

n−1
i,k + · · · + c

(r)
n−1,k λi,k + c

(r)
n,k

nλn−1i,k + (n− 1) c1,k λ
n−2
i,k + · · · + cn−1,k

,

where c
(r)
i,k = ∂Ci(Z)/∂Zr at Z = z̃k
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• Example:

– Random matrix:

A(Z) =

 Z1 + Z2 −Z2 0

−Z2 Z2 + Z3 −Z3

0 −Z3 Z3

 ,
with Zi = F−1 ◦ Φ(Gi), F = Beta cdf with range [1, 10] and shape parameters

(p = 2, q = 3), Gi ∼ N(0, 1), E[GiGj] = ρ|i−j|, i, j = 1, 2, 3, and ρ = 0.7

– Note: Z = (Z1, Z2, Z3) = a 3-dimensional Beta vector

– Distributions {Fi(λ)} of {Λi(Z)} by surrogate models based on

SROMs with m = 5 (left panel) and m = 10 (right panel)

(Dash lines ∼ MC estimates based on 1000 samples)
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– Surrogate model for eigenvectors:

Ũi(Z) =

m∑
k=1

1
(
Z ∈ Γk

) [
ũi,k +

d∑
r=1

ũ
(r)
i,k (Zr − z̃k,r)

]
,

– Ingredients: {ũi,k = Ui(z̃k)} = eigenvectors of A(z̃k) and {ũ(r)i,k = ∂Ui(Z)/∂Zr |Z=z̃k}

– Note: Gradients {ũ(r)i,k} cannot be obtained by differentiating AUi − ΛiUi = 0

– Property: If matrices ãk = A(z̃k) have distinct eigenvalues, the gradients can

be calculated from ũ
(r)
i,k =

∑n
j=1 b

(r)
ij ũj,k with b

(r)
ij = 0 if i = j and

b
(r)
ij = ṽ′j,k

(
λ̃
(r)
i,k I − ã

(r)
k

)
ũi,k/

(
λ̃j,k − λ̃i,k

)
if i ̸= j, where ṽj,k = Vj(z̃k)

– 1000 samples of Ui(Z) and Ũi(Z) with m = 20: (left and right panels)

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

u1
u2

u
3

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

u1
u2

u
3

20



– Extensions to arbitrary random matrices:

(M. Grigoriu, Monte Carlo Methods & Applications, 2014)

- Asymmetric matrices, i.e., A(Z) ̸= A(Z)T

=⇒ Construct surrogate models for both right & left eigenvectors of A(Z) defined by

A(Z)Ui(Z) = ΛiUi(Z) (right vectors)

A(Z)T Vi(Z) = Λi Vi(Z) (left vectors)

- Multiple eigenvalues, e.g., Λ1(Z) has multiplicity q ≥ 1

=⇒ Construct surrogate models for U1(Z) and the generalized

eigenvectors {Ur(Z), r = 2, . . . , q} defined by

A(Z)U1(Z) = Λ1(Z)U1(Z)

A(Z)U2(Z) = Λ1(Z)U2(Z) + U1(Z)
...

A(Z)Uq(Z) = Λ1(Z)Uq(Z) + Uq−1(Z)
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EXTREMES OF SOLUTIONS OF SEs

Objective: Estimate the distribution of extreme stresses in an elastic system

Stress/strain relation: S(x), A(x),Σ(x) = matrix-valued random fields

S(x) =

 S11(x)

S22(x)

S12(x)

 =

 A11(x) A12(x) A13(x)

A12(x) A22(x) A23(x)

A13(x) A23(x) A33(x)

 Σ11(x)

Σ22(x)

Σ12(x)

 = A(x) Σ(x), x ∈ D,

• Model for the compliance tensor: A(x) = R(x) Λ(x)R(x)′ , x ∈ D,

Λ(x) =

 Λ1(x) 0 0

0 Λ2(x) 0

0 0 Λ3(x)

 and R(x) = R1

(
Θ1(x)

)
R2

(
Θ2(x)

)
R3

(
Θ3(x)

)
,

and

R1(θ1) =

 1 0 0

0 cos(θ1) − sin(θ1)

0 sin(θ1) cos(θ1)

 , R2(θ2) =

 cos(θ2) 0 sin(θ2)

0 1 0

− sin(θ2) 0 cos(θ2)

 ,
R3(θ3) =

 cos(θ3) − sin(θ3) 0

sin(θ3) cos(θ3) 0

0 0 1

 , and Λ =

 λ1 0 0

0 λ2 0

0 0 λ3

 .
22



• Samples of eigenvalue and rotation fields:

– Samples of {Λk(x)}
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– Samples of {Θk(x)}
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• Samples of compliances:

A11(x), A12(x), A13(x)
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• Objective: Estimate large strains/stresss in random microstructures

• Solution: Monte Carlo and extreme value theory (EVT)

•Why EVT:

– Maxima Mn = max(X1, . . . , Xn), {Xi} ∼ iid, follow generalized extreme value (GEV)

distributions for a sufficiently large n under mild conditions, i.e.,

P (Mn ≤ x) ≃ G(y) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ}
,

with support {x : 1 + ξ (x− µ)/σ > 0} and location, scale, and shape

parameters µ ∈ R, σ > 0, and ξ ∈ R

– To find P (Mn ≤ x), we need to estimate (µ, σ, ξ)

(The functional form of P (Mn ≤ x) is known)

•Why not direct calculations, i.e., P (Mn ≤ x) = F (x)n, where F = CDF of Xi

– Potential numerical errors for F (x) ∼ 1 and n large

– Sensitivity of P (Mn ≤ x) to the tail of F
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• Example:

– Data: =⇒ µ̂ = 0, σ̂ = 1, γ̂3 ∈ [0, 1/3], γ̂4 =?

– Two distributions consistent with data:

Gauss (solid lines) & Gamma with γ3 = 1/3 (dash lines)
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– Probability P
(
Mn > x

)
, n = 100:

– Solid line: P
(
Mn > x

)
= 1− FGauss(x)

n

– Dash line: P
(
Mn > x

)
= 1− FGamma(x)

n
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– Note:

- FGauss(x) and FGamma(x) are consistent with data

- Available information is insufficient to identify the correct tail of F (·)
- The distributions of Mn based on FGauss(x) and FGamma(x) differ significantly
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• Implementation of GEV approximation:

– Data: =⇒ Find estimates
(
µ̂, σ̂, ξ̂

)
of the GEV parameters (µ, ξ, σ)

– GEV approximation:

P
(
Mn ≤ x

)
≃ GEV (x; µ̂, σ̂, ξ̂) = exp

{
−
[
1 + ξ̂

(
x− µ̂
σ̂

)]−1/ξ̂}
• Exact & GEV approximations of P (Mn > x):

– Exact: {Xi} ∼ Gauss (solid lines) and {Xi} ∼ Gamma (dash lines)

– GEV approximation: Gauss data (left) and Gamma data (right), n = 100
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Numerical illustration

• Specimen: Rectangular plate (20 × 10) under uniform tension in the long direction

• Compliance tensor A(x, y): Matrix-valued, positive definite, non-Gaussian field

• A sample of random compliance tensor A(x, y):
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• A sample of the stress field:

• A sample of principal stresses:
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• Notations:

Σ1(x, y) = first principal stress at (x, y) ∈ D

Σ1,max = max(x,y)∈D{Σ1(x, y)}

{σ(i)1,max, i = 1, . . . , N} = N independent samples of Σ1,max

• 1000 samples of Σ1,max (left panel) and

histogram/GEV fit (right panel)
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• Four sets of 250 samples of Σ1,max:
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• Estimates of pf(σcr) = P
(
Σ1,max > σcr

)
:

Empirical (stars) and GEV/GP based on subsets of {σ(i)1,max} with size 250
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• Estimates of pf(σcr) = P
(
Σ1,max > σcr

)
:

From the previous figures and estimate based on all data (heavy lines)
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• Comments:

– Significant sample-to-sample variability for Σ1,max

– Estimates of failure probability pf(σ) = P
(
max{Σ1} > σ

)
:

– Stars: 1000 independent samples of max{Σ1}
– Heavy solid line: GEV estimate of pf(σ) based on 1000 samples

– Thin solid lines: GEV estimate of pf(σ) based on distinct sets of 250 samples
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COMMENTS:

• Solutions of stochastic equations require

– Discretization of physical and probability spaces

– Discretization of probability space involves

- Parametric models for random fields =⇒ finite stochastic dimension

- SROMs

• Surrogate models:

– Non-intrusive

– Accurate:

- Numerical examples

- Error bounds are available

• Extremes of solutions of SEs:

– Solution by EVT

– Example: Distribution of extreme stresses in an elastic body
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