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e Generalities:

— Examples of stochastic problems

— Discretization of probability space

e Surrogate models for solutions of stochastic equations (SEs)
— Stochastic reduced order models (SROMs)

— Surrogates for solutions of SEs

— Eramples: Stochastic transport equation & Random eigenvalue problems

e Extremes of solutions of SEs:

— Matriz-valued random fields

— Solution by the extreme value theory (EVT)
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GENERALITIES

e Engineering/financial problems:

INPUT — SYSTEM — OUTPUT
(random) (stoch.eqs) (7)

e Formulation of stochastic problems:
— Construct probabilistic models for input /system
— Calibrate these models to the available information

- Observable parameters (classical statistical methods)

- Unobservable parameters (solutions of inverse problems)

e Output characterization:
— Monte Carlo simulation method: general, computationally demanding

— Popular methods: Stochastic Galerkin and collocation

— SROM-based method



e Example 1:

A
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— Input: Z = (Zy, Zs) = a two-dimensional random vector

— System (defining equation): U"(x) = —Z1(l —x)/Zy, 0<x <l
—> stochastic equation (SE), i.e., equation with random entries

— Output/Solution: U(x) = (Z1/Z>) (12*/2 — 2°/6)

— Note:
(1) Stochastic dimension of this problem is 2
(2) U(x) = parametric random function, i.e., deterministic function of z € (0,1)
that depends on 2 RVs (stochastic dimension = 2)
(3) Statistics of U(x) can be obtained simply and efficiently by MC



a response surface over (Zy, Z) for each x € [0, ]
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(4) Solution U(zx) = U(x

(x = 0.0, 0.5, 0.7, and 0.9
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e Example 2: Suppose stiffness Z, varies randomly along the beam, i.e.,
Zs +— random function Zs(x)

— Input: Z; = a random variable and Zs(x) = a random function

Note: Stiffness ~ infinite family of RVs {Z(x)} indexed by x € (0,1)
— System (defining equation): U"(x) = —Z1 (I — x)/Zy(x), 0<x <l

—> infinite stochastic dimension
— Output/Solution: U(x) = =2y [; | [; (1 —y)/Z2(y)) dy] dz, 0<z <
— Statistics of U(x):
- Generate samples Z; of Zs(x)

- Calculate corresponding samples of U(x)

- Estimate properties of U(x) from its samples
— Note:

- Samples of U(x) ~ double integrals

- Monte Carlo method is less attractive even for
this very simple stochastic problem



e General formulation:

LIU(x, 1) =Y (x,t), €D cCR? tecl0,7] (with appropriate B/ICs)

L = algebraic, differential, ... operator with random entries
Y (x,t) = random input

e Example of SPDE: |V - (A(x)VU(z)) = B(z), ©€ D CR’ (4 BCs)

A(x), B(z) = random fields defined on a
probability space (€2, F, P)

e Comments:

— If mapping A, B — U is measurable = U is a random field on (2, F, P)

— Random fields A(x), B(x) = uncountable families of real-valued random variables
indexed by x € D = infinite stochastic dimension

— We can view SPDEs as PDEs defined on (physical space)x (probability space), i.e.,
the product space (D x Q,B(D) x F, A x P)

e Conditions that A(z); B(x) must satisfy:

— Mathematical conditions: Solution existence/uniqueness
(Babuska, 1. M. et.al., STAM Journal of Numerical Analysis, 2004)

— Physical conditions: e.g., samples of A(x) must be, e.g., realistic microstructures
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e For calculations, we need to discretize
— Physical space (FEM)

— Probability space —

e Discretization of probability space:

— Construct a parametric model Ay(x, Z) for A(x), i.e., a deterministic function
of € D that depends on a random vector Z = (73, ..., Zy)
—> finite stochastic dimension (equal to d), e.g.,

Aoz, Z) =0 Zipi(x), €D

({©i} = specified deterministic functions)
— KL parametric models:

- Can only match the first two moments of A(z) (unless Gaussian)

- Provides no information on sample properties
— Sample parametric models:

- Same functional form as KL parametric model

- Matches target sample properties (essential if interested in output extremes)



e Construction of sample parametric models:
— Generate independent samples A(z,w) of A(z)
— Select a basis {1hi(z)} and set Ag(z, Z) = S0, Z; hi(x)

— Calculate corresponding samples of {Z;} by minimizing the distance

d

Alz,w) =Y Zi(w) dilx)

1=1

)

d(A(x, w), Ag(z, Z(w))) = ilelg

— Store {Z;(w)} and construct samples of Ay(x, Z)

e Example:

— Beta translation field: |A(z) = a + (b — a) F;; ! 0o ®(G(z)), z€D=(0,l1) x (0,1

Beta(p,q)

where a =3,0=20,p=2,q=06,1; =20, [, =10, p = 0.7, and
G(z) = homogeneous Gaussian field with F[G(z)] = 0 and spectral density

1 ( )\%—2p>\1)\2+)\%
exp | —

27 /1 — p? 2(1—p?)

— Parametric model for A(x):

s(\) = ) ANER? |p| < 1.

Ay(x, Z) = Zle Zii(x) ({1} = product of Chebyshev polynomials in 1 and x3)
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— Samples of Ag(x,Z) and A(x):
Samples of Ay(x, Z) with d = 25 (left top panel), d = 100 (right top panel),
and d = 225 (left bottom panel) and target sample of A(x)
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SURROGATE MODELS

e Objective: Construct surrogate models Uy (x, Z) for solutions U(x, Z) of SPDEs,
i.e., accurate + efficient approximations of U(x, Z)

e Ingredients of U (z, Z):
— Stochastic reduce order models (SROMs) Z with samples {,} for Z

— Deterministic solutions of SPDEs for {Z = 2} and gradients of these solutions

e SROM Z for Z: a random vector defined on the probability space of Z such that

~ Dimension(Z) = Dimension(Z);
— Z has a finite number of samples {Z;}, k = 1,...,m; and

~

- PL(Z) ~ PL(Z)
e Algorithm for constructing Z:

— Select m samples of Z at random and partition the range I' = Z(Q2) of Z in Voronoi
cells {T'x} centered on {2}, where I'y = {z € T': ||z — Z|| < ||z — 2|, ! # &k}

— Calculate the discrepancy between PL(Z) and PL(Z)
(Note: {Z;} and {P(Z € I'y)} define the law of Z)

— Repeat previous steps to select the optimal pair {Z;, '}, i.e., the pair that minimizes

the discrepancy between PL(Z) and PL(Z)
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e Example of SROM: Z ~ Gamma/(2, 3):

— Discrepancy between PL(Z) and PL(Z) can be measured by, e.g.,

7

> (ElZ] - E[Z") + / (F(a) — F(a))’ da

r=1

— First 6 moments of Z by an SROM Z with m = 20 (dash heavy line)
and by MC corresponding to 100 sets of 20 samples (thin solid lines)

e Note:

— SROM moments ~ exact moments

— MC moments exhibit significant sample-to-sample variation and can be inaccurate
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e Surrogate model for the mapping x — U(x, Z) defined by the first example of SE

Z1, Z) of a stochastic beam

Recall the response surfaces for the displacement U (x;
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e Surrogate model for a mapping v — U(x, Z) defined by an arbitrary SE:

ﬁL@Z, Z) = 2713;1 1<Z c Fk> [?jbk($> + Vﬂk(x) : (Z - 2/4)]

ﬁk(x) = U(CU,%/C)
Vig(z) = (0U(z,Z) /021, ..., 0U(x, Z)[0zy) for Z = Z

U(x’ Z) | ﬂ,k(l’) + Vﬂ,k(l’)(z — 5k)

e Note: Samples of U (x, Z) result from samples of Z by elementary calculations
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Example 1: Stochastic transport equation

e Problem definition: V- (A(z)VU(x)) =0
reDC RQ, D = (O,ll) X (O,lg)
U(O, CL’Q) = 0, U(ll,ZL"Q) = 1, 8U(ZC1, 0)/8%2 = 8U(az1, 12)/8$2 =0

— Beta conductivity field: |A(z) = a + (8 — o) F;, ! © (I)(G(f))

Beta(p,q)

G (x) = homogeneous Gaussian field with mean 0, variance 1,
and spectral density given in a previous slide

— Parametric model: | A(x) ~ Ay(z, Z) = 2?21 Zii(z), x€D
({1;(x)} = Chebyshev polynomials)

— U(x) ~ U(x, Z) is a parametric random field
with stochastic dimension d

— Surrogate model: |Up(x, Z) =YL, UZ € Ty) |up(x) + Vag(x) - (Z — Z)]

(piecewise linear approximation of U(x, Z))

— Numerical results for: I =20, o, =10, a=3,b=20,p =2, ¢ =06,
p = 0.7, and stochastic dimension d = 200
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e Implementation of surrogate models:

— SPDE with Z = Zy, = ui(x), k=1,...,m

— Gradient equations: O(SPDE)/0Z,, r=1,....,d

Ad(l', Z)

V- (Ai(x, Z2)VV,(2,Z)) = -V - ( A

VU (x, Z)) for Z = Zy,

where V,.(x, Z) = 0U(x, Z)/0Z,

e Calls of deterministic solver:
(m+1)d = 4020 calls for d =200 and m = 20
— Impractical for large stochastic dimensions

e Alternative surrogate model Uj(z, Z):

— Main tdea: Approximate Z by its projection on the subspace spanned by the
dominant eigenvectors of its covariance matrix

— Clalls of deterministic solvers:
(m+1)d* =120 for d* =5 and m = 20, where d* = #{retained eigenvectors}
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e Solution statistics:
— Note: Statistics of Uj(x, Z) ~ Statistics of Ur(x, Z), e.g.,
— Estimates of E[U(z, Z)] by Ug(z, Z); U (x, Z) (left panel) and MC (right panel)

~

— Estimates of Std[U(x, Z)] by Up(x, Z); Uz (z, Z) (left panel) and MC (right panel)

16



e Estimation of unobservable parameters:

— Assume the law of A(x) is known up to a parameter X\, which

- Cannot be measured and
- Enter the definition of a global property that can be measured e.g.,
the specimen apparent conductivity Aupp(D) = (1/1s) [, A(z) [0U(x, Z)/0x1] da

— Solution in the Bayesian framework:

- View A as a random variable A with prior density f’(\)

- Construct surrogates Uy, y(z, Z) for U(z, Z) | (A = \), generate samples of
Ura(z, Z), and calculate corresponding samples of the conditional
apparent conductivity Aapp(D) | (A =)

- Construct approximations for the density f(- | A) of Aupp(D) | (A = ) by using
samples of this conditional random variable

- Construct the likelihood function (A | data) = [, f(@appi(D) | A) of A from actual
measurements {appi(D)} of Aapp(D) and the densities f(- | A)

- Quantify the information on A\ by the posterior density f”(A) oc f(A) £(A | data)

— Surrogates are efficient tools for solving this inverse problem, i.e., finding f"(\)
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Example 2: Random eigenvalue problem

e Problem definition: Find eigenvalues/eigenvectors of A = A(Z) ~ square matrix,
where Z = d-dimensional random vector

— Surrogate model for the eigenvalues N;(Z) of A(Z)

:Zl<Z€Fk [Zk+z)‘zk Zkr]
k=1

— Ingredients of Ni(Z): \iy, = Ai(Z) and )\( = ONi(Z)/0Z, for Z = Z
(obtained by determlmstlc calculations)

— Calculation of 5\572 : Differentiate det(A —AT) = A"+ Ci A"+ +C, 1A+ C, =0
wrt the components {Z,} of Z

O\ 801 oA 0C,_1 oA 0C,

APl AL 4 (= 1) Oy AP A+ O —0
nANT et g N T NGOANT ee e rm A G g 5
0 _ 9N(Z) AN e N+
ik

J= - _ _ )
aZ ‘ * n )\Zk 1 + (n — 1) Cl,k )\Zk2 + -+ Cn—l,k‘

where 0572 = 0Cy(Z)/0Z, at Z = Z
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e Example:

— Random matriz:
L+ 2y —Zy 0

AZ)=| =2y Zo+Z5 —25 |,
0 Ty s

with Z; = F~1 o ®(G;), F = Beta cdf with range [1, 10] and shape parameters
(p=2.q=3). Gi~N(0,1), E[G;Gj] = pI"7.i,j =1,2,3, and p = 0.7

— Note: Z = (Zy, Zy, Z3) = a 3-dimensional Beta vector

— Distributions {F;(A\)} of {\;(Z)} by surrogate models based on
SROMSs with m =5 (left panel) and m = 10 (right panel)
(Dash lines ~ MC estimates based on 1000 samples)
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— Surrogate model for eigenvectors:

m d
U:(2)="1(Z eTy) [fa@k +3 4 (2, - zk)] ,
k=1 r=1

— Ingredients: {t;; = U;(Zx)} = eigenvectors of A(Zy) and {ﬂ,frk) = 0U(Z)/0Z, | 7-3,}
— Note: Gradients {&1(72} cannot be obtained by differentiating AU; — A; U; = 0
— Property: If matrices ar = A(Z) have distinct eigenvalues, the gradients can

be calculated from ?NLET) =i bg) g)
(NI =&Y ain/ (Mg — Aix) i 0 # 5, where Gy, = V()
~ 1000 samples of Uy(Z) and Uy(Z) with m = 20: (left and right panels)

ujp with b, = 01if ¢ = j and

b(r) o~

ii = Yk
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— Extensions to arbitrary random matrices:
(M. Grigoriu, Monte Carlo Methods € Applications, 2014)

- Asymmetric matrices, ie., A(Z) # A(Z)!
— Construct surrogate models for both right & left eigenvectors of A(Z) defined by

AZ)Ui(Z) =N, Uy(Z)  (right vectors)
A Vi(Z) = N Vi(Z) - (left vectors)

- Multiple eigenvalues, e.g., A1(Z) has multiplicity ¢ > 1
—> Construct surrogate models for U1(Z) and the generalized
cigenvectors {U,(Z),r =2,...,q} defined by

AZ)Uh(Z) = M (2) Uh(Z)
A(Z)Uy(Z) = M(Z2) Ua(Z) + Ui (Z2)

A(Z)U,(Z) = M(2) Uy(Z) + Uy 1(2)
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EXTREMES OF SOLUTIONS OF SEs

Objective: Estimate the distribution of extreme stresses in an elastic system

Stress/strain relation: S(z), A(x),>(x) = matriz-valued random fields

St () An(z) Anwa(z) As(z) | | Zulz)
S(CI?) = SQQ(CB) = A12<.CU) A22($> A23( ) 222<£U) = A(CU) Z(.SU), T € D,
S12() Agz(z) Ags(z) Ass(z) | | Yia(z)

e Model for the compliance tensor: |A(x) = R(z) A(z) R(x)', z € D,

Ai(z) 0O 0
Ax) = {O No(z) O ] and R(z)= R, (@1(x)) R (@2(1‘)) Rs (@3(56)),
0 0 As(z)
and
(10 0 cos () sin(6s)
Ry(01) = | 0 cos(fy) —sin(6y) |, Ry(6s) = {O 0 ] :
| 0 sin(fy) cos(6;) —sin(fy) 0 cos(6y)

0
1
0
[ cos(f3) —sin(f3) 0 A0 0
R3(03) = | sin(f3) cos(f3) 0|, and A= {O Ay 0 ]
0 0 1 0 0 As

22



e Samples of eigenvalue and rotation fields:

— Samples of {Ay(x
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e Samples of compliances
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e Objective: Fstimate large strains/stresss in random microstructures
e Solution: Monte Carlo and extreme value theory (EVT)

e Why EVT:

— Maxima M,, = max(Xy,...,X,), {X;} ~ iid, follow generalized extreme value (GEV)
distributions for a sufficiently large n under mild conditions, i.e.,

P(M, < 1) ~ G(y) —exp{ - [1+5 (x‘“)]%},

o

with support {x : 1 + & (x — ) /o > 0} and location, scale, and shape
parameters 4 € R, 0 > 0, and £ € R

— To find P(M,, < x), we need to estimate (p, o, &)
(The functional form of P(M,, < x) is known)

e Why not direct calculations, i.c., P(M, < x) = F(x)", where F' = CDF of X;
— Potential numerical errors for F(x) ~ 1 and n large

— Sensitivity of P(M,, < x) to the tail of F
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e Example:

— Data: = 1 =0,06 = 1,93 € [0,1/3],794 =7

— Two distributions consistent with data:
Gauss (solid lines) & Gamma with 3 = 1/3 (dash lines)

0.45

12 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
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— Probability P(Mn > x), n = 100:
— Solid line: P(Mn > a:) =1 — Faauss(T)"
— Dash line: P(Mn > x) =1 — Famma(z)"

P(Mn > x)

_10 L

-15

— Note:
- Flauss(7) and Fgamma () are consistent with data
- Available information is insufficient to identify the correct tail of F(-)

- The distributions of M, based on Fauss() and Famma(z) differ significantly
27



e Implementation of GEV approximation:
~ Data: = Find estimates (,EL, o é) of the GEV parameters (u, &, o)

— GEV approrimation:

AN
P(MRSZL“)ZGEV(QJ;A,6,§A)=GXp{— [1+§C<$&M)] }

e Exact & GEV approximations of P(M, > z):

— Fract: {X;} ~ Gauss (solid lines) and {X;} ~ Gamma (dash lines)
— GEV approximation: Gauss data (left) and Gamma data (right), n = 100

0

P(M, > z)

-10+}

-15
2
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Numerical illustration
e Specimen: Rectangular plate (20 x 10) under uniform tension in the long direction
e Compliance tensor A(x,y): Matriz-valued, positive definite, non-Gaussian field

e A sample of random compliance tensor A(x,y):

29



e A sample of the stress field:
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e Notations:
Y1(z,y) = first principal stress at (x,y) € D
Y1 max = MaX(y y)epl21(T,y)}
{ggffnax, i=1,...,N} = N independent samples of ¥ .

e 1000 samples of ¥ ;.. (left panel) and
histogram/GEV fit (right panel)
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e Four sets of 250 samples of X ;;u:
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e Estimates of pf(o.,) = P<Zl,max > acr):

Empirical (stars) and GEV/GP based on subsets of {agf])max} with

pr(oer)

pr(oe)
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e Estimates of pf(o.,) = P<Zl,max > acr):
From the previous figures and estimate based on all data (heavy lines)

2.2 24

e Comments:
— Significant sample-to-sample variability for X yax
— Estimates of failure probability ps(o) = P(max{Z} > o):
— Stars: 1000 independent samples of max{¥;}

— Heavy solid line: GEV estimate of ps(o) based on 1000 samples

— Thin solid lines: GEV estimate of ps(o) based on distinct sets of 250 samples
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COMMENTS:

e Solutions of stochastic equations require
— Discretization of physical and probability spaces
— Discretization of probability space involves

- Parametric models for random fields == finite stochastic dimension

- SROMs

e Surrogate models:
— Non-intrusive
— Accurate:

- Numerical examples

- Error bounds are available

e Extremes of solutions of SEs:
— Solution by EVT

— Ezxample: Distribution of extreme stresses in an elastic body
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