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Basic notions and perspective Empirical Optimization

Empirical Optimization

We would like to maximize the expected reward

ψ(x) := EP [f(x, Y )] ,

over x. We do not know the distribution P of Y but have n historical data points
(x1, Y1), . . . , (xn, Yn). We approximate the objective function by the sample mean

ψ̂n(x) :=
1

n

n∑
i=1

f(x, Yi) = EP̂n
[f(x, Y )],

where P̂n is the empirical distribution of Y .

aka SAA, etc.

If the distribution P of Yi does not depend on the decision x and Y1, . . . , Yn
are drawn i.i.d. from P, then ψ̂n(x) is an unbiased estimate of ψ(x), namely,

ψ(x) = EP[ψ̂n(x)].

many applications in OR/MS, statistics (machine learning), etc.
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Basic notions and perspective Empirical Optimization

Two examples from OR/MS

max
x

ψ̂n(x) :=
1

n

n∑
i=1

f(x, Yi) = EP̂n
[f(x, Y )]

Application 1: Newsvendor Problem

f(x, Y ) = rmin {x, Y } − cx,

where ▷ x ∈ R is the order quantity (decision variable),
▷ Y ∈ R is the random demand, and
▷ r and c are the revenue and cost parameters, r > c > 0.

Application 2: Portfolio Selection

f(x,R) = − exp
(
−γR⊤x

)
,

where ▷ x ∈ Rd is the portfolio vector (decision variables),
▷ R ∈ Rd is the vector of random returns, and
▷ γ is the risk-aversion parameter.
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Basic notions and perspective Robust Empirical Optimization (REO)

Robust Empirical Optimization (REO)

max
x

ψ̂n(x) :=
1

n

n∑
i=1

f(x, Yi) = EP̂n
[f(x, Y )] : Empirical optimization

max
x

min
Q

{
EQ [f(x, Y )] + θR(Q | P̂n)

}
, : Robust optimization

where θ > 0 is a constant, Q ≡ (qi) is a discrete probability distribution with the

same support as the empirical distribution P̂n ≡ (p̂i), and

R(Q | P̂n) =


∑

i: p̂i>0

qi ln
(
qi
p̂i

)
, if

∑
i:p̂i>0

qi = 1, qi ≥ 0,

+∞, otherwise,

is the relative entropy (aka Kullback-Leibler divergence) of Q relative to P̂n.
R(Q | P̂n) is non-negative and convex in Q, and equal to zero if and only if Q
equals P̂n.
θ represents the decision maker’s confidence in P̂n
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Basic notions and perspective Robust Empirical Optimization (REO)

Literature and our positioning

Computational tractability [Ben-Tal et al. 13, Bertsimas,Gupta,Kallus 13,
Bertsimas,Gupta,Kallus 14, Klaban,Simchi-Levi,Song 13, Wang,Glynn,Ye 13]

Statistical properties/asymptotics [Ben-Tal et al. 13,
Bertsimas,Gupta,Kallus 13, Bertsimas,Gupta,Kallus 14, Wang,Glynn,Ye 13]

Choice of uncertainty sets [Ben-Tal et al. 13, Bertsimas,Gupta,Kallus 13,
Bertsimas,Gupta,Kallus 14, Klaban,Simchi-Levi,Song 13, Wang,Glynn,Ye 13]

Designing machine learning algorithms robust to data errors
[Caramanis,Mannor,Xu 12, El Ghaoui,Lebret 97, Gotoh,Uryasev 13,
Xu,Caramanis,Mannor 09, Xu,Caramanis,Mannor 10]

Our research focuses on

providing perspectives on REO

“REO is almost the same as MVO”

how to determine θ (in a data-driven way)
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Basic notions and perspective A REO is almost the same as Mean-Variance Optimization (MVO)

Fact 1: REO with relative entropy (= a risk min.) = a Mean-Deviation

Proposition (REO objective with relative entropy = a Mean-Deviation objective)

gθ(x) := min
Q

{
EQ [f(x, Y )] + θR(Q | P̂n)

}
= ψ̂n(x)−Dθ

(
f(x, Y ) | ψ̂n(x)

)
,

where Dθ
(
f(x, Y ) | ψ̂n(x)

)
= θ lnEP̂n

[
exp

(
− 1

θ

(
f(x, Y )− ψ̂n(x)

))]
.

Proof.

gθ(x) = −θ lnEP̂n

[
exp

(
− 1

θf(x, Y )
)]

(∵ well-known duality)

= EP̂n

[
f(x, Y )

]
︸ ︷︷ ︸

ψ̂n(x)

−θ lnEP̂n

[
exp

(
− 1

θ

(
f(x, Y )− EP̂n

[f(x, Y )]
))]

. □

Remark: Dθ is a measure of deviation from the mean in the following sense:

1. Dθ(c|E[c]) = 0 for any constant c ∈ R;
2. Dθ(Z|E[Z]) > 0 for any (non-constant) random variable Z
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Basic notions and perspective A REO is almost the same as Mean-Variance Optimization (MVO)

Fact 2: Deviation associated with reltive entropy ≈ Variance

Dθ
(
f(x, Y ) | ψ̂n(x)

)
= θ lnEP̂n

[
exp

(
− 1

θ

(
f(x, Y )− ψ̂n(x)

))]
= θ lnEP̂n

[
1− 1

θ

(
f(x, Y )− ψ̂n(x)

)
+

1

2θ2

(
f(x, Y )− ψ̂n(x)

)2

+ · · ·
]

= θ ln
{
1 +

1

2θ2
EP̂n

[(
f(x, Y )− ψ̂n(x)

)2]
+ · · ·

}
=

1

2θ

{ 1

n

n∑
i=1

(
f(x, Yi)− ψ̂n(x)

)2}
+ o(1/θ)

=
1

2θ
VP̂n

(f(x, Y )) + o(1/θ)
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Basic notions and perspective A REO is almost the same as Mean-Variance Optimization (MVO)

REO with relative entropy ≈ Mean-Variance

min
Q

{
EQ [f(x, Y )] + θR(Q | P̂n)

}
= EP̂n

[f(x, Y )]− 1

2θ
VP̂n

[f(x, Y )] + o(1/θ),

Correlation coefficients of out-of-sample rewards by REO and MVO
Newsvendor

θ n = 10 n = 50 n = 100
5 0.97 0.69 0.66
10 0.92 0.77 0.78
50 0.95 0.96 0.96
100 0.94 0.94 0.94
500 0.96 0.92 0.92
1000 0.98 0.96 0.95
10000 0.97 0.99 0.99
∞ 1.00 1.00 1.00

Portfolio Selection
θ n = 50 n = 100 n = 150

0.01 0.692 0.624 0.608
0.05 0.957 0.959 0.958
0.10 0.987 0.991 0.993
0.50 0.999 1.000 1.000
1 1.000 1.000 1.000
10 1.000 1.000 1.000
100 1.000 1.000 1.000
∞ 1.000 1.000 1.000

Newsvendor (θ = 100 and n = 10) Portfolio Selection (θ = 0.05 and n = 100)
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Basic notions and perspective A REO is almost the same as Mean-Variance Optimization (MVO)

Out-of-sample variance reduction (Newsvendor)

EP̂n
[f(x, Y )]

robustified⇝ EP̂n
[f(x, Y )]− 1

2θ
VP̂n

[f(x, Y )] + o(1/θ)

⇝Robustness is achieved by controlling the variability of the reward distribution

Robust vs. Empirical: out-of-sample profits in the Newsvendor problem with θ = 100
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Basic notions and perspective A REO is almost the same as Mean-Variance Optimization (MVO)

Out-of-sample variance reduction (Portfolio Selection)

EP̂n
[f(x, Y )]

robustified⇝ EP̂n
[f(x, Y )]− 1

2θ
VP̂n

[f(x, Y )] + o(1/θ)

⇝Robustness is achieved by controlling the variability of the reward distribution

Robust vs. Empirical: out-of-sample certainty equivalent in the Portfolio Selection with θ = 0.05
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Extension

1 Basic notions and perspective
Empirical Optimization
Robust Empirical Optimization (REO)
A REO is almost the same as Mean-Variance Optimization (MVO)

2 Extension
REOs are generally almost the same as MVO

3 Selection of Ambiguity Parameter
(Standard) Cross-Validation
Robust Cross-Validation
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Extension REOs are generally almost the same as MVO

Extension to REO with Csiszár’s ϕ-Divergence

Let ϕ be a closed proper convex function such that ϕ : R → R ∪ {+∞} and

ϕ(z) ≥ ϕ(1) = 0 for all z. The ϕ-divergence of Q relative to P̂n is defined by

Hϕ(Q | P̂n) :=


∑

i:p̂i>0

p̂iϕ
(
qi
p̂i

)
,

∑
i:p̂i>0

qi = 1, qi ≥ 0,

+∞, otherwise.

Examples

· relative entropy if ϕ(z) = z ln z − z + 1
· χ2-divergence if ϕ(z) = 1

z
(z − 1)2

· modified χ2-divergence if ϕ(z) = (z − 1)2

· Hellinger distance if ϕ(z) = (
√
z − 1)2

(See, e.g., [Ben-Tal et al. 13] for other examples.)

The robust objective function associated with the ϕ-divergence penalty:

gθ,ϕ(x) := min
Q

{
EQ [f(x, Y )] + θHϕ(Q | P̂n)

}
,

where constant θ > 0 is the ambiguity parameter.
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Extension REOs are generally almost the same as MVO

REO with ϕ-divergence = a Mean-Deviation (= a risk minimization)

Assumption (⋆)

For every x, the worst case probability measure

Q∗ ∈ argmin
Q

{
EQ [f(x, Y )] + θHϕ(Q | P̂n)

}
is equivalent to P̂n; that is, q∗i > 0 if and only if p̂i > 0.

Proposition

If Assumption (⋆) is satisfied in addition to the assumption of the previous
proposition, then the following two objective functions are equal:

1. gθ,ϕ(x) = min
Q

{
EQ[f(x, Y )] + θHϕ(Q | P̂n)

}
; (robust objective function)

2. ψ̂n(x)−Dθ,ϕ,P̂n
(f(x, Y )) | ψ̂n(x)). (mean-deviation objective function)

Remark: Maximizations of 1. and 2. are also equal to minimization of a risk measure Rθ,ϕ,P̂(x).
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Extension REOs are generally almost the same as MVO

Regular Measure of Deviation

Dθ,ϕ,P(Z |EP[Z]) := inf
c

{
c+ θEP

[
ϕ∗

(
EP[Z]− Z − c

θ

)]}
where ϕ∗ denotes the conjugate of ϕ, i.e., ϕ∗(ζ) = supz{zζ − ϕ(z)}.

Definition (Regular Measure of Deviation [Rockafellar, Uryasev 13])

Given any probability space (Ω,F ,P), let L2(Ω) denote the space of
square-integrable random variables, i.e., E

[
X2

]
<∞. A functional

D : L2(Ω) → [0,∞] is said to be a regular measure of deviation if it is closed
convex and satisfies

1. D(c) = 0 for any constant c ∈ R.
2. D(Z) > 0 for any (non-constant) random variable Z ∈ L2(Ω).

Proposition

Let ϕ be a closed proper convex function such that ϕ(1) = 0 and ϕ′(1) = 0.
Then, for any random variable Z ∈ L2(Ω), D(Z) = Dθ,ϕ,P(Z |EP[Z]) is a regular
measure of deviation.
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Extension REOs are generally almost the same as MVO

REO with ϕ-divergence ≈ MVO

Proposition

Suppose that ϕ is convex, twice continuously differentiable, and that ϕ(1) = 0,

ϕ′(1) = 0 and ϕ′′(1) > 0. Then the deviation measure Dθ,ϕ,P̂n
(f(x, Y ) | ψ̂n(x))

satisfies

Dθ,ϕ,P̂n
(f(x, Y ) | ψ̂n(x)) =

1

2θϕ′′(1)
σ̂2
n(x) + o(1/θ),

where σ̂2
n(x) := VP̂n

(f(x, Y )).

Consequently,

min
Q

{
EQ [f(x, Y )] + θHϕ(Q | P̂n)

}
= ψ̂n(x)−

1

2θϕ′′(1)
σ̂2
n(x) + o(1/θ),

⇝Robustness is achieved by controlling the variability of the reward distribution

Remark: Mean-Variance Optimization may not be a convex optimization even when the
reward f(x, Y ) is concave in x, while Robust Optimization is convex whenever f(x, Y ) is
concave.
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Selection of Ambiguity Parameter

1 Basic notions and perspective
Empirical Optimization
Robust Empirical Optimization (REO)
A REO is almost the same as Mean-Variance Optimization (MVO)

2 Extension
REOs are generally almost the same as MVO

3 Selection of Ambiguity Parameter
(Standard) Cross-Validation
Robust Cross-Validation

Gotoh, Kim, Lim (Tokyo, Toronto, Singapore) Robust Optimization ≈ Mean-Variance Optimization Nov 9, 2015 17 / 24



Selection of Ambiguity Parameter (Standard) Cross-Validation

Selection of Ambiguity Parameter θ

With relative entropy, REO results in a convex optimization problem:

max
x

−θ lnEP̂n

[
exp

(
− 1

θ
f(x, Y )

)]
How to select θ? ⇝ Cross-Validation

1. Let Θ := {θ1, ..., θH} be a
set of candidates of θ.

2. Divide the whole data
samples available into
k = 10 subsets, I,II,..., X.

3. For each θ ∈ Θ, do the
procedure on the right.

4. Pick up the best θ so that
the mean of the CV
distribution is maximized.
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Selection of Ambiguity Parameter (Standard) Cross-Validation

Cross-Validation for Newsvendor problem

Table: 10-Fold Cross-Validation Results for robust optimization and empirical
optimization for the newsvendor problem

Mean Standard Deviation 1% VaR
n Choice of θ robust emp robust emp robust emp
10 2460 271.73 215.77 24.64 128.40 191.58 -818.60
50 17180 273.73 272.25 16.87 24.42 223.40 54.49
100 61990 278.84 277.68 12.36 14.94 232.96 149.62

CV is conducted for θ ∈ {10, 50, 100, 500, 1000, 5000, 10000}.
Stats are computed over 100,000 data sets drawn from a mixture of two
exponential distributions
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Selection of Ambiguity Parameter (Standard) Cross-Validation

Cross-Validation for Portfolio Selection problem

Table: 10-Fold Cross-Validation Results for Robust Optimization and Empirical
Optimization for Portfolio Selection Problem (in units of return [×10−2%])

Mean Standard Deviation 1% VaR
n Choice of θ robust emp robust emp robust emp
50 0.300 65.72 46.55 27.52 26.80 -18.93 -19.37
100 0.300 72.03 55.90 23.51 24.48 -4.53 -9.46
150 0.255 76.91 62.36 19.59 22.45 5.30 -0.78
The second column reports the geometric mean of the chosen θ’s over the 1000 data sets.

CV is conducted for θ ∈ {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}.
stats are computed over 1000 data sets drawn from a normal distribution
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Selection of Ambiguity Parameter Robust Cross-Validation

In-sample Distribution vs. Out-of-sample Distribution for Portfolio Selection
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Selection of Ambiguity Parameter Robust Cross-Validation

In-sample vs. Out-of-sample Mean/StDev. for Portfolio Selection
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Selection of Ambiguity Parameter Robust Cross-Validation

Robust Cross-Validation

Table: Improved 10-Fold Cross-Validation Results (in units of return [×10−2%])
(1) Minimum-variance cross-validation

Mean Standard Deviation 1% VaR
n Choice of θ robust emp robust emp robust emp
50 0.013 83.59 46.55 8.02 26.80 60.83 -19.37
100 0.019 86.26 55.90 5.29 24.48 72.11 -9.46
150 0.025 87.21 62.36 4.29 22.45 76.24 -0.78

CV is conducted for θ ∈ {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}.

(2) Mean-variance cross-validation: Optimizing mean −c× std.devi. (c = 3.09/
√
n− 1)

Mean Standard Deviation 1% VaR
n Choice of θ robust emp robust emp robust emp
50 0.026 80.54 46.55 14.21 26.80 20.79 -19.37
100 0.027 84.68 55.90 11.09 24.48 29.85 -9.46
150 0.029 86.79 62.36 6.84 22.45 61.96 -0.78

CV is conducted for θ ∈ {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}.

(3) Constrained cross-validation: Optimizing θ over [0.01, 0.1]
Mean Standard Deviation 1% VaR

n Choice of θ robust emp robust emp robust emp
50 0.030 81.36 46.55 11.50 26.80 44.93 -19.37
100 0.032 86.21 55.90 7.44 24.48 63.99 -9.46
150 0.032 87.65 62.36 6.03 22.45 71.03 -0.78

CV is conducted for θ ∈ {0.01, 0.02, ..., 0.09, 0.1}.
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Selection of Ambiguity Parameter Robust Cross-Validation

Concluding remarks

1. REO ≈ MVO

⇝ Robustness is achieved by controlling the variability of the reward distribution

2. Parameter selection via CV should also be robust,
i.e., we should take into account the variability in the CV distribution

We have demonstrated three robust CVs:

2.1 Minimum-variance CV: Choose θ that minimizes the variance of utility in
cross-validation;

2.2 Mean-variance CV: Choose θ that optimizes a mean-variance objective in
cross-validation;

2.3 Constrained CV: Optimize θ over a range where the sample variance of utility,
and the difference between in-sample and out-of-sample expectd utilities, is
small.

One can imagine more sophisticated versions where the range is chosen
adaptively as a function of the data set.
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