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Introduction

A performance measure assigns score ρ(X) to future returns X ∈ Lp:

ρ : Lp → R

This talk is about

performance ∼ trade-off
profit

uncertainty

1/26



Motivation – the Sharpe ratio

The Sharpe Ratio is a well-known performance measure:

S(X) =
EX√
VarX

X ∈ L2 – return over benchmark.

Advantages:

Simple interpretation (∼ t-statistic)

Easy to compute and optimize (
∑

i λiXi → max)

Disadvantages:

Not monotone: X > Y 6=⇒ S(X) > S(Y )

Symmetric

Not flexible: only EX and VarX
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Example – non-monotonicity of the Sharpe ratio

Sharpe ratio “Monotone” Sharpe ratio Skew

Fund 1 0.80 1.35 1.28
Fund 2 1.15 1.28 0.43
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Outline of the talk

1. Performance measures axioms, ideas to improve the Sharpe ratio

2. Main results: abstract reward-to-variability measures, their properties
and representation theorems

3. Examples of new performance measures

4. Applications to data
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Modifications of the Sharpe ratio

Two basic ideas to improve the Sharpe ratio:

Monotone modification

ρ(X) = sup
Y 6X

EY√
VarY

Arbitrary measures of profit µ and uncertainty δ

ρ(X) = sup
Y 6X

µ(Y )

δ(Y )
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Axioms for performance measures

Cherny and Madan (2009, Rev. Financ. Stud.)

1. Quasi-concavity
{X : ρ(X) > C} is convex for any C

2. Upper semi-continuity
{X : ρ(X) > C} is closed for any C

3. Monotonicity
X > Y =⇒ ρ(X) > ρ(Y )

4. Scale invariance
ρ(λX) = ρ(X) for any λ > 0
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Literature: other performance measures

Treynor ratio, Sortino ratio, Downside symmetric ratio, Omega measure,
Gain-to-loss measure, Distortion measures, . . .

Surveys:

Le Sourd (2007) – 50 measures

Cogneau & Hubner (2009) – 101 measure

This paper: have a simple interpretation & satisfy the axioms
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Auxiliary objects: coherent utility and deviation measures

A coherent utility measure (measure of profit) is a functional
µ : Lp → R which is

1. Concave
2. Positively homogeneous: µ(λX) = λµ(X) for λ > 0
3. µ(C) = C for constants
4. Upper semi-continuous

Dual representation as “the worst scenario expectation”:

µ(X) = inf
Q∈Q

E[QX], Q ⊂ Lq, EQ = 1 for Q ∈ Q

(Artzner, Delbaen, Eber, Heath, 1997)
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(Rockafellar, Uryasev, Zabarankin, 2002-2006)

A coherent deviation measure (measure of uncertainty) δ : Lp → R
1. Convex
2. Positively homogeneous
3. µ(C) = 0 for constants (and also µ(X) > 0 for non-constants)
4. Lower semi-continuous

Dual representation:

δ(X) = inf
R∈R

E[RX], R ⊂ Lq, ER = 0 for R ∈ R

Connection:

µ(X) “=” EX − λ · δ(X) profit = expectation - uncertainty
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Examples

1. The simplest measure of profit: the expectation

µ(X) = EX Q = {1}

2. Lp deviation:

δ(X) = ‖X − EX‖p R = {R : ER = 0, ‖R‖q = 1}

3. Minus Average Value at Risk, λ ∈ (0, 1):

µ(X) = −AVaRλ(X) “=” E(X | X 6 qλ(X))

Q = {Q : Q ∈ [0, λ−1],EQ = 1}
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4. Worst-case return and deviation:

µ(X) = ess inf(X), δ(X) = EX − ess inf X

5. Range
δ(X) = ess sup(X)− ess inf(X)

6. AVaR range:

δ(X) = AV aRλ(X)−AV aRλ(−X)

7. Log-exponential utility, for EX > 0

µ(X) = EX · log E exp(X/EX)
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Main results

Definition of a monotone profit-to-uncertainty ratio:

ρ(X) = sup
Y 6X

µ(Y )

δ(Y )
, X ∈ Lp

Theorem 1. Properties of ρ:

1. the smallest monotone functional not less than the ratio µ/δ

2. quasi-concave

3. scale invariant

4. upper semi-continuous
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A dual representation for ρ

Problem: ρ(X) involves the double optimization problems:

ρ(X) = sup
Y 6X

inf
Q,R

EQY

ERY

The next part:

1. A theorem reducing general ρ(X) to a single optimization problem

2. Particular examples, where ρ(X) reduces to optimization over a ∈ R
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Theorem 2. A measure ρ can be represented in the form

ρ(X) = inf
R,Q

{
EQX

ERX

∣∣∣ Q · ERX > R · EQX a.s.

}
where inf is over R ∈ Rδ, Q ∈ Qµ satisfying the condition on the right.

Remark. If µ(·) = E(·), then

ρ(X) = EX ·
(

sup
R

{
ERX

∣∣ ERX > R · EX a.s.
})−1
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Technical assumptions needed for Theorem 2

A1 (Finiteness of µ, δ)

For X ∈ Lp, p ∈ [1,∞): R,Q are bounded in Lq

For X ∈ L∞: R,Q are uniformly integrable

A2 (Consistency of δ and Lp)

If X 6 0 and sup
R∈R

ERX <∞, then X ∈ Lp.
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Examples

Example 1. Monotone Sharpe ratio

MS(X) = sup
Y 6X

EY√
VarY

, X ∈ L2

Representation
For any X ∈ L2, EX > 0, P(X < 0) > 0 we have

1

MS(X)2 + 1
= inf

x>0
E((1− xX)+)2
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Application to portfolio optimization

The problem of portfolio optimization

MS
(∑

iλiXi

)
→ max over λ ∈ Λ

is equivalent to

E
((

1− x
∑

iλiXi

)+)2 → min over λ ∈ Λ, x > 0
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Equivalent representation

MS(X) =

√
x∗

E(x∗ −X)+
− 1

where x∗ is the unique root of the function

f(x) = E(X · (x−X)+)

Properties of g(x):

f(x) is continuous

If X has density, then f(x) is continuously differentiable

If X is discrete, then f(x) is piecewise linear
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Behavior of MSR for skewed distributions

Example:
SR and MSR for Normal and Pearson distributions with variance 1.
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Example 2. Sharpe ratio with Lp deviation

MSp(X) = sup
Y 6X

EY

‖Y − EY ‖Lp

Representation

(MSp(X))q

q − 1
= max

x,y>0

{
p(y − 1)− E

(
|f(X,x, y)|p − pf(X,x, y)

)}
where

f(X,x, y) = 1− (y − xX)+
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Example 3. AVaR deviation ratio

ρ(X) = sup
Y 6X

EY

EY + AVaRλ(Y )

Representation

If AVaR(X) > 0 then

ρ(X) =
EX

EX + AVaRλ(X)

If AVaR(X) < 0 then

λ

(1− λ)ρ(X) + λ
= min

x
E(1 + xX)+
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Applications to investment funds performance data

Normalization

To compare MS(X) with S(X), define

f := (x 7→ MS(N(x, 1)))−1

The normalized monotone Sharpe ratio:

MS(X) = f(MS(X))

“SR of a Normal r.v. with the same MSR”, MS(N(µ, σ2)) =
µ

σ
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The Morningstar Database

S(X) and MS(X) for different funds in 1995–2009.

x-axis: S(X), y-axis: MS(X)/S(X)
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The highest MS/S ratio (“Shinnecock Futures Fund”)

S = 0.80, MS = 1.33
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Comparison with some two other funds
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Conclusion

We proposed a new class of performance measures

ρ(X) = sup
Y 6X

µ(Y )

δ(Y )

They are monotone and satisfy additional “nice” properties

The general dual representation theorem can be used to reduce
to a simpler optimization problem

Efficient representations are obtained for particular cases
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