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Controlled Markov Models

State space X (Borel)

Control space U (Borel)

Feasible control set U W X � U, t D 1; 2; : : :

Controlled transition kernel Q W graph.U/! P .X/, t D 1; 2; : : :
P .X/ - set of probability measures on X

Cost functions c W X �U! R, t D 1; 2; : : :

State history ht D .x1; : : : ; xt/ 2 Xt (up to time t D 1; 2; : : : )

Policy �t W X
t ! U, t D 1; 2; : : : (always supported in U.xt/)

Markov policy �t W X ! U, t D 1; 2; : : :
(stationary if �t D �1 for all t)

xt �! ut D �t.xt/

.xt ; ut/ �! xtC1 � Q.xt ; ut/
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Risk-Neutral Total Cost Problem

In�nite horizon expected cost problem:

min
�1;�2;:::

E˘

"
1X
tD1

˛t�1ct.xt ; ut/

#
; ˛ 2 .0; 1�

with controls ut D �t.x1; : : : ; xt/

Two Cases:

Discounted models (with ˛ < 1) and transient models (with ˛ D 1)

Standard Results:

A deterministic Markov policy is optimal

Optimal policy can be found by dynamic programming equations

Our Intention

Introduce risk aversion to the problem by replacing
the expected value by dynamic risk measures
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Using Dynamic Risk Measures for Markov Decision Processes

Controlled Markov process x˘t , t D 1; : : : ;T

Policy ˘ D f�1; �2; : : : ; �T g with ut D �t.xt/ implies measure P˘

Cost sequence Z˘t D c.x˘t ; �t.x
˘
t // (bounded), t D 1; : : : ;T ,

Dynamic time-consistent risk measure

JT .˘/ D Z˘
1
C �˘

1

�
Z˘
2
C � � � C �˘T�1.Z

˘
T / � � �

��
Risk-averse optimal control problem: min

˘
lim

T!1
JT .˘/

Di�culties

Probability measure P˘ , processes x˘t and Z˘t depend on policy ˘

The one-step risk measures �˘t .�/ depend on ˘ and may depend on
history ) no Markov policies

Idea

We only need to measure risk of random sequences that may occur
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Stochastic Conditional Time-Consistency (with Jingnan Fan)

History ht D .x1; : : : ; xt/. Process Z
˘
t .ht/ D c.xt ; �t.ht//, t D 1; : : : ;T

A family of conditional risk measures f�˘t;T g
˘2˘
tD1;:::;T is stochastically

conditionally time-consistent if for all feasible policies ˘;˘ 0, all
1 � t � T � 1, and for all histories ht 2 Xt , the relations

Z˘t .ht/ D Z˘
0

t .ht/�
�˘tC1;T .Z

˘
tC1

; : : : ;Z˘T /
ˇ̌
H˘t D ht

�
�st

�
�˘

0

tC1;T .Z
˘ 0

tC1
; : : : ;Z˘

0

T /
ˇ̌
H˘

0

t D ht
�

imply
�˘t;T .Z

˘
t ; : : : ;Z

˘
T /.ht/ � �

˘ 0

t;T .Z
˘ 0

t ; : : : ;Z˘
0

T /.ht/

The conditional stochastic order �st:

Q˘t .ht/
�
fy W Z˘t .ht/C �

˘
tC1;T .Z

˘
tC1

; : : : ;Z˘T /.ht ; y/ > �g
�

� Q˘
0

t .ht/
�
fy W Z˘

0

t .ht/C �
˘ 0

tC1;T .Z
˘ 0

tC1
; : : : ;Z˘

0

T /.ht ; y/ > �g
�

Andrzej Ruszczy«ski Risk-Averse Control of Markov Systems



Markovian Risk Measures (with Jingnan Fan)

A family of process-based dynamic risk measures
˚
�˘t;T

	˘2˘

tD1;:::;T
for a

Markov decision problem is Markovian if for all Markov policies ˘ 2 ˘ , for
any measurable and bounded c1; : : : ; cT W X �U! R, and for all
ht D .x1; : : : ; xt/ and h0t D .x

0
1
; : : : ; x 0t/ such that xt D x 0t , we have

�˘t;T
�
ct.Xt ; �t.Xt//; : : : ; cT .XT ; �T .XT //

�
.ht/

D �˘t;T
�
ct.Xt ; �t.Xt//; : : : ; cT .XT ; �T .XT //

�
.h0t/:

If the current state xt is the same, and the same Markov policy ˘ is used,
then the risk is the same. The risk measure can be written as a function of
the state:

�˘t;T
�
ct.Xt ; �t.Xt//; : : : ; cT .XT ; �T .XT //

�
.xt/
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Structure of Markovian Risk Measures (with Jingnan Fan)

For a �xed history-dependent policy ˘ and every ht 2 Xt , we write

v c;˘t .ht/ D �
˘
t;T

�
ct.Xt ; �t.Ht//; : : : ; cT .XT ; �T .HT //

�
.ht/

If a family of process-based dynamic risk measures
˚
�˘t;T

	˘2˘

tD1;:::;T
is

Markovian, translation-invariant, and stochastically conditionally
time-consistent, then there exist transition risk mappings

�t W
˚�
x ;Qt.x ; u/

�
W u 2 U.x/; x 2 X

	
� V ! R; t D 1; : : : ;T � 1

(V - space of measurable bounded functions on X)
such that for all ˘ 2 ˘ , for all t D 1; : : : ;T � 1, and all ht 2 Xt , the
functional �t

�
xt ;Qt.xt ; �t.ht/; �/

�
is a law-invariant risk measure on�

X;B.X/;Qt

�
and for any c D fctgtD1:::T , we have

v c;˘t .ht/ D ct.xt ; �t.ht//C�t
�
xt ;Qt.xt ; �t.ht//; v

c;˘
tC1

.ht ; �/
�
; t D 1 : : :T�1
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Structure of Markovian Risk Measures (with Jingnan Fan)

For a �xed history-dependent policy ˘ and every ht 2 Xt , we write

v c;˘t .ht/ D �
˘
t;T

�
ct.Xt ; �t.Ht//; : : : ; cT .XT ; �T .HT //

�
.ht/

If a family of process-based dynamic risk measures
˚
�˘t;T

	˘2˘

tD1;:::;T
is

Markovian, translation-invariant, and stochastically conditionally
time-consistent, then there exist transition risk mappings

�t W
˚�
x ;Qt.x ; u/

�
W u 2 U.x/; x 2 X

	
� V ! R; t D 1; : : : ;T � 1

(V - space of measurable bounded functions on X)
such that for all ˘ 2 ˘ , for all t D 1; : : : ;T � 1, and all ht 2 Xt , the
functional �t

�
xt ;Qt.xt ; �t.ht/; �/

�
is a law-invariant risk measure on�

X;B.X/;Qt

�
and for any c D fctgtD1:::T , we have (for Markovian ˘)

v c;˘t .xt/ D ct.xt ; �t.xt//C �t
�
xt ;Qt.xt ; �t.xt//; v

c;˘
tC1

.�/
�
; t D 1 : : :T � 1
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Finite Horizon Risk-Averse Control Problem

Consider a controlled Markov process fXtg with ut D �t.X1; : : : ;Xt/.

Risk-averse optimal control problem:

min
˘

JT .˘; x1/ D c1.x1; u1/C �
˘
1

�
c2.X2; u2/C � � �

C �˘T�1

�
cT .XT ; uT /C �T

�
cTC1.XTC1/

�
� � �

��
Theorem

If the conditional measures �˘t are Markovian (+ general conditions), then
the optimal solution is given by the dynamic programming equations:

vTC1.x/ D cTC1.x/; x 2 X

vt.x/ D min
u2U.x/

n
ct.x ; u/C �t

�
x ;Qt.x ; u/; vtC1

�o
; x 2 X; t D T ; : : : ; 1

Optimal Markov policy Ŏ D f O�1; : : : ; O�T g - the minimizers above
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Finite Horizon Risk-Averse Control Problem

Consider a controlled Markov process fXtg with ut D �t.X1; : : : ;Xt/.

Risk-averse optimal control problem:

min
˘

JT .˘; x1/ D c1.x1; u1/C �
˘
1

�
c2.X2; u2/C � � �

C �˘T�1

�
cT .XT ; uT /C �T

�
cTC1.XTC1/

�
� � �

��
Theorem

If the conditional measures �˘t are Markovian (+ general conditions), then
the optimal solution is given by the dynamic programming equations:

vTC1.x/ D cTC1.x/; x 2 X

vt.x/ D min
u2U.x/

n
ct.x ; u/C max

�2At.x;Qt.x;u//
E�
�
vtC1

�o
; x 2 X; t D T ; : : : ; 1

Optimal Markov policy Ŏ D f O�1; : : : ; O�T g - the minimizers above
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In�nite Horizon Risk (for stationary and coherent models)

Discounted risk measure (0 < ˛ < 1)

J˛T .˘; x/ D Z˘
1
C �˘

1

�
˛Z˘

2
C � � � C �˘T�1

�
˛T�1Z˘T

�
� � �

�
Optimal cost: J�.x/ D inf

˘
lim

T!1
J˛T .˘; x/

Assume that the model is stationary, the conditional risk measures �t ,
t D 1; : : : ;T , are Markovian (+ technical conditions). Then a bounded
function v W X ! R satis�es the dynamic programming equations

v.x/ D min
u2U.x/

n
c.x ; u/C ˛�

�
x ;Q.x ; u/; v

�o
; x 2 X;

if and only if v.�/ � J�.�/. Moreover, the minimizer ��.x/, x 2 X, on the
right hand side exists and de�nes an optimal Markov policy
˘� D f��; ��; : : : g.

If ˛ D 1 additional conditions of risk transient models
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In�nite Horizon Risk (for stationary and coherent models)

Discounted risk measure (0 < ˛ < 1)

J˛T .˘; x/ D Z˘
1
C �˘

1

�
˛Z˘

2
C � � � C �˘T�1

�
˛T�1Z˘T

�
� � �

�
Optimal cost: J�.x/ D inf

˘
lim

T!1
J˛T .˘; x/

Assume that the model is stationary, the conditional risk measures �t ,
t D 1; : : : ;T , are Markovian (+ technical conditions). Then a bounded
function v W X ! R satis�es the dynamic programming equations

v.x/ D min
u2U.x/

n
c.x ; u/C ˛ max

�2A.x;Q.x;u//
E�Œv �

o
; x 2 X;

if and only if v.�/ � J�.�/. Moreover, the minimizer ��.x/, x 2 X, on the
right hand side exists and de�nes an optimal Markov policy
˘� D f��; ��; : : : g.

If ˛ D 1 additional conditions of risk transient models
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Continuous-Time Markov Chains

For a �nite state space X, we consider a continuous-time Markov chain
fXtg0�t�T with the transition function

Qt;r .y jx/ D P.Xr D y jXt D x/;

where x ; y 2 X and 0 � t < r � T . We assume that the transition rates

Gt.y jx/ D lim
�#0

1

�

�
Qt;tC� .y jx/ � ıx .y/

�
; x ; y 2 X;

are uniformly bounded for all 0 � t � T . Here,

ıx .y/ D

(
1 if y D x

0 otherwise

The rates constitute the generator Gt W X !M.X/,
where M.X/ is the set of signed measures on X
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Stochastic Conditional Time Consistency (with Darinka Dentcheva)

�Œ0;t� - history (path) of the process X up to time t

�
�t
t;r - space of paths on Œt; r � starting from �t ; P

�t
t;r - corresponding measure

A dynamic risk measure % D
˚
%t;T

	
t2Œ0;T �

is stochastically conditionally

time-consistent, if for all 0 � t � r � T , all �Œ0;t� 2 �Œ0;t�, if

%r ;T .ZT / j �Œ0;t� �st %r ;T .WT / j �Œ0;t�
then

%t;T .ZT /.�Œ0;t�/ � %t;T .WT /.�Œ0;t�/ .?/

It is strongly stochastically conditionally time-consistent, if for any two times
r1; r2 2 Œt;T �, the inequality

%r1;T .ZT / j �Œ0;t� �st %r2;T .WT / j �Œ0;t� implies .?/

The conditional stochastic order ��st�: for all � 2 R

P�tt;r1
˚
%r1;T .ZT / j �Œ0;t� > �

	
� P�tt;r2

˚
%r2;T .WT / j �Œ0;t� > �
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Markovian Risk Measures (with Darinka Dentcheva)

Cost of the process starting from �t at time t:

Z �tt;T D

Z T

t
cs
�
X t;�t
s

�
ds C f

�
X t;�t
T

�
A dynamic risk measure

˚
%t;T

	
t2Œ0;T �

is Markovian, if for all 0 � t < T ,

all paths �Œ0;t�; �
0
Œ0;t�

, the equality �t D �
0
t implies that for all bounded

measurable functions c W Œt;T � �X ! R and f W X ! R we have

%t;T
�
Z �tt;T

�
.�Œ0;t�/ D %t;T

�
Z
�0
t

t;T /
�
.� 0Œ0;t�/:

The risk of the future costs Z �tt;T is a function of the last observed state �t .

For Markovian risk measures having the local property we write

vt.�t/ D %t;T
�
Z �tt;T

�
.�t/
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Structure of Markovian Risk Measures (with Darinka Dentcheva)

Cost accumulated on the interval Œt; r �, given state �t :

I �tt;r .c/ D

Z r

t
cs.X

t;�t
s / ds

�
�t
t;r - space of paths on Œt; r � starting from �t ; P

�t
t;r - corresponding measure

If
˚
%t;T

	
t2Œ0;T �

is stochastically conditionally time-consistent, translation

invariant, and Markovian, then for every 0 � t � r � T and every �t 2 X

a functional &
�t
t;r W ˇ1.�

�t
t;r ;P

�t
t;r /! R exists such that

vt.�t/ D &
�t
t;r

�
I �tt;r .c/C vr .X

t;�t
r /

�
Moreover, the functional &

�t
t;r .�/ is law invariant with respect to the

probability measure P�tt;r .

If % is coherent, then &
�t
t;r .�/ is a coherent measure of risk
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Transition Risk in Short Intervals (with Darinka Dentcheva)

Assumption: &
�t
t;r .�/ is Lipschitz continuous in p̌

�
�
�t
t;r ;P

�t
t;r

�
, p 2 Œ1;1/.

If a dynamic risk measure
˚
%t;T

	
t2Œ0;T �

is strongly stochastically

conditionally time-consistent, translation invariant, and Markovian, then for
every t 2 Œ0;T � a functional �t W X �P .X/ �ˇ.X/! R exists such that
for every ZT , for all �t 2 X, and all r 2 Œt;T � we have

vt.�t/ D

Z r

t
cs.�t/ ds C �t

�
�t ;Qt;r . �

ˇ̌
�t/; vr

�
C o.r � t/;

(i) �t.�; �; �/ is law invariant with respect to the second argument

(ii) If % is coherent, then �t.�t ; �; �/ is a coherent measure of risk

(iii) For all x 2 X and all v 2 ˇ.X/, we have �t.x ; ıx ; v/ D v.x/,
where ıx is the Dirac measure at x [ state consistency ]
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Di�erentation of Multikernels (with Darinka Dentcheva)

Q - set of stochastic kernels Q W X ! P .X/

If �t.x ;m; �/ is coherent, then the following dual representation is true:

�t
�
x ;m; v

�
D max
�2At.x;m/

X
y2X

v.y/�.y/; v 2 ˇ.X/;

where At.x ;m/ � P .X/ is a nonempty, convex, closed, and bounded set.
We de�ne the multikernel M W Q � Q:

M.Q/ D
˚
M 2 Q W M.x/ 2 A.x ;Q.x//; 8 x 2 X

	
:

A multifunction M is semi-di�erentiable at the point I in the direction
K 2 TQ.I / if a nonempty set D.K / � S exists, such that for every sequence
"n # 0 and every sequence Kn ! K , Kn 2 TQ.I /,

lim
n!1

1

"n

�
M.I C "nKn/ � I

�
D D.K /;

The set D.K / is called the semiderivative of M at I in the direction K .
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Summary of Results (with Darinka Dentcheva)

Semiderivatives D.K / of many transition risk mappings
(semideviations, average value at risk, etc.) exist and can be calculated,
for every tangent direction K

In our case, K D Gt (the generator of the system)

For small time increments ı, we can derive the �chain rule�

M.Qt;tCı/ � I C ıD.Gt/

Using the support functions sx .v/ D sup�2D.Gt/.x/

P
y2X �.y/v.y/,

we derive the value function representation by ODEs:

@vt.x/

@t
D �ct.x/ � sx .vt/; t 2 Œ0;T �; x 2 X;

vT .x/ D f .x/; x 2 X:

Close approximations by discrete-time models can be constructed,
and the discrete-time theory and methods apply
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Controlled Di�usion Processes

Filtered probability space .˝;F ;P;F /
Filtration F is generated by n-dimensional Brownian motion fWtgt2Œ0;T �

Controlled di�usion process with initial value � 2 ˇ2.˝;Ft ;P IR
n/:

dX t;� Iu
s D b.s;X t;� Iu

s ; us/ ds C �.s;X
t;� Iu
s ; us/ dWs ; s 2 Œt;T �;

X t;� Iu
t D �;

with functions b W Œ0;T � �Rn � U ! Rn and � W Œ0;T � �Rn � U ! Rn�d .
Cost rate c W Œ0;T � �Rn � U ! R; Final cost 	 W Rn ! R.
Cost accumulated in the interval Œt;T �

�t;T .u; �/ WD

Z T

t
c.s;X t;� Iu

s ; us/ ds C 	.X
t;� Iu
T /; a.s.:

All functions are assumed to be su�ciently regular (Lipschitz or bounded).
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Risk-Averse Control Problem

min
u.�/2U

%0;T

 Z T

0

c.s;X 0;x0Iu
s ; us/ ds C 	.X

0;x0Iu
T /

!
dX 0;x0Iu

s D b.s;X 0;x0Iu
s ; us/ ds C �.s;X

0;x0Iu
s ; us/ dWs ; s 2 Œ0;T �

where
˚
%t;r

	
0�t�r�T

is a dynamic risk measure on the space of
square-integrable adapted processes on Œ0;T � �˝

Time consistency: %t;r .Yr / D %t;s
�
%s;r .Yr /

�
, for all t � s � r

Local property: %t;r .1AYr / D 1A%t;r .Yr /; for all events A 2 Ft .

Structure of %t;r .�/ [Coquet, Hu, Mémin, Peng (2002)]

Under mild conditions, a generator g W Œ0;T � �R �Rn exists, such that
%t;r .�/ D Yt , where .Y ;Z / solve backward stochastic di�erential equation

�dYs D g.s;Ys ;Zs/ ds � Z 0s dWs ; s 2 Œt; r �; Yr D �:

If g is convex, pos.-homogeneous, independent of y , then % is coherent
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Dynamic Programming (with Jianing Yao)

Value function

V .t; x/ D inf
u.�/2U

%t;T

 Z T

t
c.s;X t;xIu

s ; us/ ds C 	.X
t;xIu
T /

!
Dynamic Programming Equation

For any .t; x/ 2 Œ0;T / �Rn and all r 2 Œt;T �, we have

V .t; x/ D inf
u.�/2U

%t;r

� Z r

t
c
�
s;X t;xIu

s ; us
�
ds C V

�
r ;X t;xIu

r

��
:

Related decoupled forward�backward system:

dX t;xIu
s D b.s;X t;xIu

s ; us/ ds C �.s;X
t;xIu
s ; us/ dWs ; s 2 Œt; r �

X t;xIu
t D x

�dY t;xIu
s D

�
c.s;X t;xIu

s ; us/C g.s;Z t;xIu
s /

�
ds � Z t;xIu

s dWs ; s 2 Œt; r �

Y t;� Iu
r D V

�
r ;X t;xIu

r

�
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Risk-Averse Hamilton�Jacobi�Bellman Equation (with Jianing Yao)

Laplacian operator:�
ˇ˛w

�
.t; x/ D @tw.t; x/C

C

nX
i ;jD1

1

2

�
�.t; x ; ˛/�.t; x ; ˛/>

�
ij
@xixjw.t; x/C

nX
iD1

bi .t; x ; ˛/@xiw.t; x/:

Risk-Averse HJB Equation

On the space �
1;2
b
.Œ0;T � �Rn/, we consider the following equation

min
˛2U

n
c.t; x ; ˛/C

�
ˇ˛v

�
.t; x/C g

�
t; ŒDxv � �

˛�.t; x/
�o
D 0 8.t; x/

v.T ; x/ D 	.T ; x/; x 2 Rn:

If the functions b and � are bounded, then the value function V .t; x/
is a viscosity solution of the risk-averse HJB equation.
Conversely, if the HJB equation has a solution, it is equal to V .t; x/.
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Extensions and Current Research on Risk-Averse Control

Partially Observable Markov Processes (with Jingnan Fan)

process-based risk measures
transition risk mappings on the observable part
dynamic programming equations

Risk-Averse Control of Clinical Trials
(with Darinka Dentcheva and Curtis McGinity)

new dynamic models of clinical trials
approximate dynamic programming methods

Risk-Averse Control of Di�usion Processes (with Jianing Yao)

approximation by risk-averse Markov chains
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