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1 Conservative distribution approximations

2 Bu�ered probability of exceedance (bPOE)

3 Multidimensional bPOE (M-bPOE)

4 (Multivariate) conservative distribution approximations
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Problem Description

Sample distribution of deviations from a desired value.

Robust approximation is needed (preferences:
continuous/grid, closed form).

Distribution is one of the many in a system. Deviations
from central values add up. Risk for the system.

Conservative approximation needed: risks of high
deviations must not be underestimated.
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Optimization Problem

max
Y

H(Y )

s.t. X ≤′2 Y ,−X ≤′2 −Y ,
σ2(Y ) ≤ σ2(X ) + ∆σ2.

1 Why Second-Order Stochastic Dominance?

Risk averse decision maker

2 Why Entropy Maximization?

Smooth and robust solution

3 Why Variance Constraint?

Bounded feasible set
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Method properties

Discussed dominance constraint guarantees �fatter� right
and left tails compared to sample X

When ∆σ2 → 0, then optimal solution converges in
distribution to the sample distribution

Optimal solution is a maximum-of-Gaussians distribution

P(Y ) = max
i=1,...,m

Ci exp{−(Y − µi)
2/2σ2}
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Convergence Example 1: ∆σ2 ≤ 0.01
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Convergence Example 2: ∆σ2 ≤ 0.005
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Convergence Example 3: ∆σ2 ≤ 0.001
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Convergence Example 4: ∆σ2 ≤ 0.0005
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Finite number of superquantile constraints

For discrete distribution the scaled superquantile is
(1− αi)Q̄αi

(X ) =
∑m

j=i+1 pixi , α0 = 0, αi =
∑i

j=1 pi
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Q̄α(Y ) ≥ Q̄α(X ) for α = αi is su�cient for SOSD
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bPOE explanation (continuous case)

P(X > x): probability of exceedance
P(X > q(x)): bu�ered probability of exceedance
q(x) : E [X |X > q(x)] = x , x − q(x): �bu�er�
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Bu�ered Probability of Exceedance

P(X ≥ x) ≡ px(X ) ≤ p̄x(X )

p̄x(X ) is the only smallest quasi-convex and law-invariant

upper bound for px(X )

p̄x(X ) = inf
a≥0

E [a(X − x) + 1]+

where [x ]+ = max{0, x}

p̄x(X ) = 1 for x < EX p̄x(X ) = 0 for x > supX

p̄x(X ) is decreasing and continuous for x ∈ [EX , supX )
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bPOE Properties w.r.t. Parameter x

1/p̄x(X ) is a convex nondecreasing function of x
and piecewise-linear if X is discretely distributed
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Primal and Dual formulations for bPOE

Primal

p̄x(X ) = min
a≥0

E [a(X − x) + 1]+

Dual

p̄x(X ) = max EW

s.t. EXW ≥ xEW

0 ≤ W ≤ 1

Dual Multivariate

p̄x(X) = max EW

s.t. EXiW ≥ xiEW , i = 1, . . . , d

0 ≤ W ≤ 1
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Multidimensional bPOE

Primal Multivariate

p̄x(X) = min
a≥0

E [aT (X− x) + 1]+

Suppose that instead of random variable X there is a random
vector X = (X1, . . . ,Xn).
If the law g for aggregating components of X into a value
g(X), determining undesired events, is known, then the
problem is reduced to bPOE framework.
What if there is no known law? Let us quantify risks as follows:

F−X(−x) = P(X1 ≥ x1 and . . . and Xn ≥ xn) ≡ px(X) ≤ p̄x(X)
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Lift Zonoid (by Koshevoy & Mosler)

Z (X) = {(p, y) ∈ Rd+1|p = EW , yi = EWXi , 0 ≤ W ≤ 1}
Z (X) uniquely determines distribution of X;
Z (X) is a convex set; (0,0) ∈ Z (X); (1,EX) ∈ Z (X);
if E |X| <∞, then Z (X) is compact;
if X is discretely distributed, then Z (X) is polyhedral
extreme points ← expectations within linear cut-o�s
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Lift Zonoid Transformation

Homography (p,u)→ (1/p,u/p) applied to Z (X)
line → line & continuous in R++ × Rd | ⇒ preserves convexity
Thransforms Z (X) into epi(1/fX(x)), where

fX(x) = sup
W

EW = inf
a

E [aT (X− x) + 1]+

s.t. EWX = xEW

0 ≤ W ≤ 1

1/fX(x) is convex, piecewise-linear, with knots of type

x̄(λ, b) =
∑

λT xi≥b

xipi
/ ∑
λT xi≥b

pi , XX :=
⋃
λ,b

x̄(λ, b)
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Stochastic Dominance Equivalence

Zonoid Dominance (Mosler & Koshevoy):
X ≤Z Y ⇔ Z (X) ⊆ Z (Y)
Hence, X ≤Z Y ⇔ fX(z) ≤ fY(z) for z ∈ XX
X ≤Z Y constraint as a �nite number of linear constraints!
Linear Second Order Dominance (Dentcheva & Ruszczynski):
X ≤lin

2 Y ⇔ µTX ≤2 µ
TY for all µ ≥ 0

X ≤lin
2 Y ⇔ p̄z(X) ≤ p̄z(Y) for z ∈ X+

X
:= ∪µ≥0,b x̄(µ, b)

X ≤lin
2 Y constraint as a �nite number of linear constraints!

X ≤Z Y and X ≤lin
2 Y are closely related as fX(x) and p̄x(X):

fX(x) = inf
a∈Rd

E [aT (X−x)+1]+ p̄x(X) = inf
a≥0

E [aT (X−x)+1]+
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Optimization problem formulation

Take γ > 1 (analogue of ∆σ2 in 1-dimensional version)

max
Y

H(Y)

s.t. X ≤Z Y (⇔ −X ≤Z −Y)

σ2(µTY) ≤ γ · σ2(µTX) for all µ

Dominance constraint ⇔ for all x̄i ∈ XX:

EV i1 ≥ fX(x̄i)

EV iY = x̄iEV i1

0 ≤ V i ≤ P

Variance constraint ⇔ (Λ � 0↔ Λ � PSD)

EPYY
T − γEXXT + (γ − 1)EXEXT � 0
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Maximum of Gaussians form of optimal solution

With γ → 1, optimal solution →F sample distribution
Optimal solution is a weighted maximum of Gaussian
functions: Λ � 0, µα ≥ 0

P(Y ) = exp

{
−YTΛY − λT0 Y − λ1 +

∑
i

[µi
α + (Y − x̄i)Tλix ]+

}
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Convergence in distribution

Thank you!
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