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Consider stochastic optimization problem:

Min {f(2) = Ep[F(z,9)]}, (1)

where £ is a random vector having probability distribution P, and
F(x,€) is a real valued function. Assume that the expectation
f(x) is well defined and finite valued for every x € X.

Let PN be an empirical estimate of P, based on a sample of size
N, and suppose that problem (1) is approximated by

Min < f, =E5 [F . 2
Min { fv(@) :=Ep, [F(z,0)] (2)
Let ¥ and xp be the corresponding optimal value and an op-
timal solution of the approximating problem (2). What are sta-

tistical properties of ¥ and 7



Examples

Maximum Likelihood method.

Let Xq,..., X be an iid sample of realization of random vector
X ~ P. Consider a parametric family with pdf f(z,0), 6 €¢ ©,
and the likelihood function Ly (8) = [T, f(X;,0). We have that

N~tlog Ly(0) = N~* Z log f(X;,0) = Ep_[log f(X,6)],
1=1
where Py = N=1 3V . §(X;). By the Law of Large Numbers we
have that N~ 1log Lx(8) converges w.p.1 to Ep[log f(X,0)].
The ML problem

Max N~ LYlog L (6
Ma g Ln(6)

can be considered as an empirical approximation of the problem

'g/leégEP[lOg F(X,0)].



Sample Average Approximation (SAA) method.

Consider ‘true’ stochastic programming problem (1). Let &1, ... ¢V
be an iid sample of random vector &, say generated by Monte
Carlo method. The corresponding problem

N
Min {fy() = N7 Y Fa.6)]
re X =1
IS considered as an approximation of the true problem.

Two-stage (linear) stochastic programming problem with re-

course, F(z,&) :==c'a + Q(z,¢), where X := {z : Az = b, > 0}

and Q(x,€) is the optimal value of the second stage problem
Min,q'y st. Te+ Wy =h, y >0,

with € = (¢, T, W, h).



Nested formulation the linear multistage stochastic program

i T : T ) T
min ci1x I min CHX o4 K min CrI ]
7120 2220 zp>0

Equivalent formulation

min E [C-{xl -+ C%_ZCQ(S[Q]) -+ C;xT(g[T])}
xlaxQ(')a"'axT(')
S.t. A1CE1 = b1, 1 > O,
Bz 1(€p—11) + Azt () = be,
:Ct(f[t]) >0,t=2,....T.
Here & = (¢, Bt, Ae,by), t = 2,...,T, is considered as a ran-

dom process, £1 = (¢1,A1,b1) is supposed to be known, ) 1=
(&1, ...,&) denotes history of the data process up to time ¢t.



Optimization is performed over feasible policies (also called de-
cision rules). A policy is a sequence of (measurable) functions
rp = azt(g[t]), t=1,...,7. Each xt(g[t]) is a function of the data
process up to time ¢, this ensures the nonanticipative property
of a considered policy. The constraints should be satisfied for
almost every realization of the random data process.

Suppose that the random process & is stagewise independent,
I.e., 41 Is independent of g[t], t=1,...,7T—1. An SAA problem
IS constructed by generating independent samples from marginal
distributions of & of respective sample sizes Ny, t = 2,...,T. Note
that the total number of scenarios (sample paths) of the obtained
scenario tree is [T/_, N.



Risk measures

Let (2, F,P) be a probability space and Z = Ly,(2,F,P), p €
[1,00), be the linear space of random variables (measurable func-
tions) Z : 2 — R having finite p-th order moments. Functional
p. Z — R is said to be a coherent risk measure if it satisfies the
following axioms (Artzner, Delbaen, Eber, Heath (1999)):

(A1) Convexity: p(aZ14+ (1 —a)Z>) < ap(Z1)+ (1 —a)p(Zy) for
all Z1,Z> € Z and a € [0, 1].

(A2) Monotonicity: If Z1,Z» € Z and Z», > Z1, then
p(Z2) > p(Z71).

(A3) Translation Equivariance: If a« € R and Z € Z, then
p(Z +a) = p(Z) + a.

(A4) Positive Homogeneity: p(aZ) = ap(Z), Z € Z, a > 0.
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It is said that risk measure p: Z — R is law invariant if Z1,Z> &€
Z and Zq L Z~> implies that p(Z1) = p(Z>). The notation

Al L Z> means that Z1 and Z5 are distributionally equivalent, i.e.,
P(Z1 <z)=P(Z, < z) for all z € R. If p is law invariant, then
it can be considered as a function of the cdf G(z) = P(Z < z).
Let Gn(2) = N71 2N 1(Z; < 2) be the empirical cdf based on
sample Z1,...,Zx. Then p(G) can be estimated by p(Gn).

Average Value-at-Risk measure, for a € (0,1),

AVaR,(G) = ﬁ/@l Gyt = inf {t+ (1 - ) 'EGLZ — 14}

Its empirical estimate

_ , 1 N
AVaRa(Gy) = inf {t + NGy i t]+} -
1=1



Any law invariant coherent risk measure p : Z — R can be written
in the following form (the so called Kusuoka representation)

1
p(G) = sup | AVaR,(G)du(c),
neM /0

where 9t is a set of probability measures on the interval [0, 1).
Consequently p can be represented in the following minimax form

1 —+ o0
(G) = sup inf{ /_ ha(z,t)dG(z)}d,u(a)

pneM 0 teR o0

1 4o
— inf ho(z. dG(2)du(a),
sup inf [ ] ha(ar(@)dG()du(a)

where

ha(z,t) ==t + (1 —a) 1z —t]4.



Consistency

Under what conditions the empirical estimates ¥, and z con-
verge as N — oo (say w.p.1) to their true counterparts? That
is, whether 95 — 99 and dist(Z,Spg) — 0 w.p.1, where g is the
optimal value and Sp is the set of optimal solutions of the true
problem.

Uniform Laws of Large Numbers

Theorem 1 (convex case) Suppose that the set X C R"™ is
compact, the function F(x,£) is convex in x € R"™, the expected
value function f(x) is finite valued on a neighborhood V of X
and fy(x) converges w.p.1 to f(x) for every x € V. Then

sup )fN(:c) — f(a:)‘ — 0w.p.1as N — oo.
reX



Theorem 2 Suppose that: (i) X is a compact metric space, (ii)
for any x € X the function F(-,£) is continuous at x for a.e. &,
(iii) supgex |F(z,8)| < g(&) with E|lg(&)] < oo, (iv) the sample is
iid. Then the expected value function f(x) is finite valued and
continuous on X, and  SUP,cx ‘fN(x) — f(a:)‘ — 0 w.p.1.

Epiconvergence

Consider a sequence f; : R® — R of extended real valued func-
tions. It is said that f;. epiconverge to a function f, written
fr AN f, if for any x € R™ the following two conditions hold:

(i) for any sequence x; converging to x one has

liminf f,(zx) > f(=),
k— o0
(ii) there exists a sequence zj; converging to z such that

limsup fi(zr) < f(=).

k— 00
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Let p: Z2 - R, Z = Ly(2, F,P), p € [1l,00), be a law invariant,
convex risk measure (i.e., satisfies axioms of Convexity, Mono-
tonicity and Translation Equivariance), and Fp(w) = F(z,&(w)).
Suppose that for every x € R™ the random variable F, € Z. Then
we can consider the composite function ¢(x) := p(Fy). Let G, n
be empirical cdf associated with ij = F(x,¢7), j=1,...,N, and
iid sample ¢1,...,¢V. Then én(z) := p(G,n) gives an estimate of

¢(x).

Theorem 3 Suppose that:(i) Fy, € Z for every x € R™, (ii) the
function F(x,w) = Fy(w) is random lower semicontinuous, (iii)
for every x € R™ there is a neighborhood Vz of x and a function
h € Z such that F(x,-) > h(-) for all x € Vz. Then the functions
¢ is lower semicontinuous and dn = ¢ w.p.1.
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Central Limit Theorem type results. Notoriously slow con-
vergence of order O,(N~1/2). By the CLT, for a given z € X,

N2 [fn(2) = £(2)] = N(0,0%(2)),

where o2(z) := Var[F(z, £)].

Delta method

Let Yy € RY be a sequence of random vectors, converging in
probability to a vector u € R, Suppose that there exists a
sequence Ty — +oo such that = (Yy — p) By. LetG:RY 5 R™
be a vector valued function, differentiable at u, and M = VG(u)

be the m x d Jacobian matrix. Then 7 [G(Yy) — G(u)] B my.

In particular, suppose that N1/2(Yy — u) converges in distribu-
tion to a (multivariate) normal distribution N(0,X) with zero
mean vector and covariance matrix 2. Then it follows that
N2 [G(vy) — G(w)] B N0, M=MT).
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Infinite dimensional Delta Theorem

Let B; and B> be two Banach spaces, K be a closed subset of
By and G : K — B». It is said that G is Hadamard directionally
differentiable at pu € K tangentially to K if for any d € Ty (n) the
following limit exists

G(p+td) — G(n)

/ . .
G,(d) = llﬂ? .
d’—>Kd
The notation d — . d means that K > d — d. The contingent
cone Tg(u) consists of the limits of  sequences

(yn — p)/tn, Where y, € K and t, | 0. In particular if the set
K is convex, then Ty (u) is the tangent cone to K at .
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Theorem 4 (Delta Theorem) Let By and B> be Banach spaces,
equipped with their Borel c-algebras, K be a closed subset of By,
G : K — By, 7y be a sequence of positive numbers tending to
infinity as N — oo, and Yy be a sequence of random elements of
B1 such that Yy € K w.p.1. Suppose that the set K is separable,
the mapping G is Hadamard directionally differentiable at a point
uw € K tangentially to K, and the sequence Xy = ™n(Yn — 1)
converges in distribution to a random element Y of By. Then

D
™5 [G(Yn) — G(w)] = G,(Y).
Moreover if the set K is convex, then

5 [G(YN) — G(w)] = G, (XN) + op(1),
or equivalently

G(Yn) = G(p) + G, (Y — n) + op(txh).
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Second order Delta Theorem

Suppose further that the set K is convex and second order
Hadamard directional derivative tangentially to K exists for all

d € Tr(p):
G(pu+td) — G(u) —tG,(d)

" )
G,(d) = Ig{gw v :
d'— d 2
Then
D "
% [G(YN) — G(w) — Gl (Yy — )] = LG, ().
and

G(Yy) = G(p) + G, (Yn — ) + G, (Y — 1) + op(132).-

15



Asymptotics of the SAA problems. Let X be a nonempty com-
pact subset of R"™ and consider the space B = C(X) of continuous
functions ¢ : X — R. Assume that:

(A1) For some point z € X the expectation E[F(z, £)?] is finite.
(A2) There exists a measurable function C(¢) such that E[C(£)?]
is finite and

F(z,8) — F(/,6)| < C@©z — 2|,

for all z,2’ € X and a.e. €.

We can view Yy := fy as a random element of C(X). Consider
the min-function V : B — R defined as V(Y) = infcy Y (x).
Clearly 95 = V(Yy). It is possible to show that for any pu € C(X)
and X*(u) ;= argmin ey p(x),
/ .
VM((S) xel)?*f(u)cS(x), Vo € C(X),
and the above directional derivative holds in the Hadamard sense.
16



By a functional CLT, under assumptions (Al) and (A2),
NY/2(fn — f) converges in distribution to a random element Y
of C(X). For any finite set {x1,...,xm} C X, the random vec-
tor (Y(z1),...,Y (xm)) has a multivariate normal distribution with
zero mean and the same covariance matrix as the covariance
matrix of (F'(x1,€),..., F(xm,€)). In particular, for fixed x € X,
Y (z) ~ N(0,02(z)) with o2(z) := Var[F(z, £)].

Theorem 5 Suppose that the set X C R"™ is compact, and as-
sumptions (A1) and (A2) hold. Then

On = min fy(z) + Op(N_l/Q)a
€Sy

N12[@y — 9] B infaes, V().

In particular, if the optimal set (of the true problem) Sg = {xg}
is a singleton, then

NY2[9y — 90] B N(0, 02 (20)).
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Second order asymptotics. Consider second order directional
derivative of the optimal value function V(Y) = infcx Y (z):

V(p+td) —V(p) —tv,(d)

2 R
V,(d) = Igw v :
d'—d 2
If So = {zp}, then under certain regularity conditions
Vi) = inf {2nTVs(z0)+h' V2 f(20)h—s(~V f(z0), T (w0, h))},
hEC(ajo)

where s(y, A) = sup,c4y'z is the support function of set A,

C(z0) = {h € Tx(x0) : k' Vf(z0) =0}
is the critical cone, Ty (xg) is the tangent cone to X at zg, and
T2 (z,h) = {z dist(z + th + 122, X) = o(t?), t > o}

IS the second order tangent set.
18



Suppose that N1/2(fy — f) converges in distribution to a ran-
dom element Y (in a functional space of Lipschitz continuous
functions) and regularity conditions hold (in particular, the true
problem has unique optimal solution zp). Then

Iy = fn(zo) + Vi (Fx — ) +op(N 1)

5 ~ D

N|On — Fn(zo)| = LV (Y).
Moreover, if for all 46 the optimization problem in the calculation
of Vjé’((S) has unique optimal solution A = h(§), then

N2y — 20) B R(Y).
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Bias of the optimal value ¥ of the SAA problem.
For any fixed x € X, E [fN(a:)] = f(x), i.e., fy(z) is an unbiased
estimator of f(x) = E[F(x,£&)]. However,

E|dy| =E [;nei)g fN(w)] <E|fv(@)|, Vzex,

and hence E [@N] < Y9 = Mingcy f(z).
If Sg = {zg}, then (under some regularity conditions)

E[9y] —d0 = INTIEVF (V)] + o(N ),

and hence the (negative) bias E [@N} — g is of order O(N—1). If
Spo is “large”, then

E [6N] — 9= N1/ [ inf Y(:c)] + o(N~1/2),
€Sy

and the bias is of order O(N—1/2).
20



Example (Average Value-at-Risk)

Sample estimate of § = AVaR,(Z) is obtained by replacing the
expectation E[Z — t]1 with the corresponding sample average,
that is

: 1
NZ%Q&{HN(l_ Z[Z _t]+}

By the above theorem (assuming IE|Z|2 < o0) we have

Oy = inf {t+N(11— Z[Z —t]—l—}‘|'0p(N 1/2),

telt,t]

where t is the left side and ¢t is the right side a-quantiles of the dis-
tribution of Z. In particular, if t =, then N1/2(5 —0) converges
in distribution to normal N(0,02) with
0?2 =(1-a) 2Var([Z —t]y).
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Second order expansion of the Average Value-at-Risk
Suppose that cdf G(-) of Z has unique a-quantile t = G~ 1(«).
Suppose further that G(-) is continuous at ¢ and has positive
density g(t) = dG(t)/dt at t =t. Then

On —Fn@ = N7UInf {7V + 372 f" (D) | + 0p(N )
(1-— a)V2
- 2Ng(D)
where V ~ N (0,~2) with
> . _ 10lZ -1\ _GHA-GR) _ «
~y ._Var((l—a) ey >_ (1_a)? =1

Consequently, under appropriate regularity conditions,
—~ B —~ _ D B L 2
N [HN fN(t)} — [2g(f)] X715

E[0n] — 6 = —QNg@ 4+ o(N—D).

+ Op(N_1)7
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Minimax stochastic programs

Minsup {f(z.) := E[F (,4. O]},

where X C R"™ and Y C R™ are closed sets, F: X x )Y x=—R
and £ = £&(w) is a random vector whose probability distribution
IS supported on set = C RY. The corresponding SAA problem

IS obtained by using the sample average as an approximation of
the expectation f(x,vy), that is

_ 1 N |
Min sup {fw(w,y) = ZlF(w,y,ﬁj)} :

xre ;
yEy ]=
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Suppose that: (i) the sets X and Y are nonempty, convex and
compact, (ii) the function F(x,y,£) is convex in x € X and con-
cave iny e ), (iii) F(x,y,€) is dominated by an integrable func-
tion, (iv) for some (z,y) € X XY, E[F(z,v,£)?] < oo, (V) there is
C : = — Ry such that for all z,2’ € X, y,v' € Y and a.e. ¢,

[F(x,y,6) — F(a', ', )] < CE) (= — 'l + [ly — 4D
Then
Iy = inf sup fn(z,y) + op(N'/?),
xESX yESY

where Sy and Sy are the respective sets of optimal solutions.
Moreover, if Sxy = {zg} and Sy = {yo} (i.e., (xg,yg) is the unique
saddle point od the true problem), then N1/2(J, —19g) converges
in distribution to normal N (0,c2) with o2 = Var[F(zg, yo, £)].
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Sample size estimates (by Large Deviations type bounds)
Consider an iid sequence Yq,...,Yy of replications of a real val-
ued random variable Y, and let Zy := N=13¥ | Y; be the cor-
responding sample average. Then for any real numbers a and
t > 0 we have that Prob(Zy > a) = Prob(et4N > et?), and hence,
by Markov inequality

Prob(Zy > a) < e E[e!ZN] = e[ M (t/N)]Y,

where M (t) := E[e!Y] is the moment generating function of Y.
Suppose that Y has finite mean p := E[Y] and let a > u. By tak-
ing the logarithm of both sides of the above inequality, changing
variables ' = t/N and minimizing over ¢’ > 0, we obtain

%log [Prob(ZN > a)} < —I(a), (3)

where I(z) := supscr {tz — A(t)} is the conjugate of the logarith-
mic moment generating function A(t) := log M (t).
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Suppose that |X| < oo, i.e., the set X is finite. Let S: be the set
of e-optimal solutions of the true problem and 551\[ be the set of
d-optimal solutions of the corresponding SAA problem. Suppose
that: (i) for every x € X the expected value f(x) = E[F(x,€£)] is
finite, (ii) there are constants ¢ > 0 and a € (0, 4+oc] such that

M(t) < exp{c?t?/2}, Vi€ [—a,a], Vo € X\ S°,

where M, (t) is the moment generating function of the random
variable F(u(x),&) — F(x,€) —E[F(u(x),&) — F(x,£)] and u(x) is a
point of the optimal set Sg. Choose € >0, § >0 and o € (0,1)
such that 0 < e — § < ac?. Then for sample size

N > 20° log <|X|>
(e —9)?

we are guaranteed, with probability at least 1 — «, that any §-

optimal solution of the SAA problem is an e-optimal solution of

the true problem, i.e., Prob(Ssy C S:) > 1 — a.
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Let X = {x1,25} with f(z2) — f(z1) > € > 0 and suppose that
random variable F'(x5,£) — F(x1,£) has normal distribution with
mean u = f(x2) — f(z1) and variance ¢2. By solving the corre-
sponding SAA problem we make the correct decision (that zq is
the minimizer) if fy(xo) — fy(xz1) > 0. Probability of this event
is ®(uv/'N /o). Therefore we need the sample size N > 2202 /¢2
in order for our decision to be correct with probability at least

1 — o.

In order to solve the corresponding optimization problem we need
to test Hy : u < 0 versus Hy : > 0. Assuming that o2 is known,
by Neyman-Pearson Lemma, the uniformly most powerful test is:
“reject Hy if fn(zo) — fy(x1) is bigger than a specified critical
value' .

27



Now let X C R™ be a set of finite diameter D :=sup, ,c y ||z’ —z|.
Suppose that: (i) for every z € X the expected value f(z) =
E[F(x,£&)] is finite, (ii) there is a constant o > 0 such that

M, () < exp{c?t?/2}, VtER, Va',z € X,

where M,/ ,.(t) is the moment generating function of the random
variable F(z',¢) — F(x,¢) —E[F(2',¢) — F(x,¢)], (iii) there exists
k . = — R4 such that its moment generating function is finite
valued in a neighborhood of zero (with L = E[x(£)]) and

P, &) — F(z,)| < r(®|d' —=zll, V€=, Va/,z e X.
Choose € >0, § € [0,e) and a« € (0,1). Then for sample size

2 (2 o (2058) e (2] v o )

we are guaranteed that Prob (551\[ C 88) >1— «.
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In particular, if x(€) = L, then the estimate takes the form

LD 10 (O(l)l;L) + 1o <1>] |

vzow (1) - 2

Suppose further that for somec > 0, v > 1 and € > ¢ the following
growth condition holds

f(x) > 0" + c[dist(x, Sp)]”, Vz € S5,

and that the problem is convex. Then, for ¢ € [0,e/2], we have
the following estimate of the required sample size:

2 —_
( O(1)LD > n10g (O(l)DL> +log (1)] |
€ 8

cl/ve(v=1)y
where D is the diameter of Sz. In particular, if S;g = {zg} is a
singleton and v = 1, we have the estimate (independent of ¢):

N > O(1)c?L? [n log(O(1)e L) + |og(a—1)} .

N >
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Sample complexity of multistage stochastic programming

Conditional sampling. Let ¢, i = 1,...,N;, be an iid ran-
dom sample of &. Conditional on & = gé, a random sample
§§j, 7 = 1,...,No, is generated and etc. The obtained scenario
tree is considered as a sample approximation of the true prob-
lem. Note that the total number of scenarios N = Hth_ll Ny and
each scenario in the generated tree is considered with the same
probability 1/N . Note also that in the case of stagewise in-
dependence of the corresponding random process, we have two
possible strategies. We can generate a different (independent)
sample gj;f 7 =1, ...,N2, for every generated node fg, or we can
use the same sample &4, j = 1,..., No, for every gg. In the second
case we preserve the stagewise independence condition for the
generated scenario tree.
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For T' = 3, under certain regularity conditions, for ¢ > 0 and
a € (0,1), and the sample sizes N1 and N> satisfying

O(1) K—D{fl)nl exp{ - O(”évlsz}
+(222) "o {2002} | <

we have that any first-stage ¢/2-optimal solution of the SAA
problem is an e-optimal first-stage solution of the true problem
with probability at least 1 — «. (Here Dq,D»,L1,L>,01,05> are
certain analogues of similar constants in the sample size estimate
of two stage problem.)
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In particular, suppose that Ny = N, and take L := max{L1, Lo},
D := max{D1, D5}, o? := max{o?,05} and n := max{ni,ns}.
Then the required sample size N1 = No:
O(1)0? O(1)DL 1
Ny > X [nlog( W >+|og(—)],
g «

3

with total number of scenarios N = N7.

That is, the total number of scenarios needed to solve a T-
stage stochastic program with a reasonable accuracy by the
SAA method grows exponentially with increase of the number
of stages T'. Another way of putting this is that the number
of scenarios needed to solve T-stage problem would grow as
O (a_Q(T—l)) with decrease of the error level £ > 0.
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